Heat and mass transfer of NEPCM in a wavy porous cavity with variable hot and high-concentration zones: A study using ISPH and XGBoost models

Abdelraheem M. Aly , Noura Alsedais
{"title":"Heat and mass transfer of NEPCM in a wavy porous cavity with variable hot and high-concentration zones: A study using ISPH and XGBoost models","authors":"Abdelraheem M. Aly ,&nbsp;Noura Alsedais","doi":"10.1016/j.icheatmasstransfer.2024.108383","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the heat and mass transfer characteristics within a wavy porous cavity filled with nano-enhanced phase change materials (NEPCM), employing the incompressible smoothed particle hydrodynamics (ISPH) and XGBoost models. Key parameters, including the Darcy number (<span><math><mi>Da</mi></math></span>) ranging from <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> to <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span>, Rayleigh number (<span><math><mi>Ra</mi></math></span>) from <span><math><msup><mn>10</mn><mn>3</mn></msup></math></span> to <span><math><msup><mn>10</mn><mn>6</mn></msup></math></span>, fusion temperature (<span><math><msub><mi>θ</mi><mi>f</mi></msub></math></span>) from 0.05 to 0.9, and Soret and Dufour numbers (<span><math><mi>Sr</mi></math></span> and <span><math><mi>Du</mi></math></span>) up to 0.6, were varied to analyze their impact on heat and mass transfer efficiency. Variable high-temperature and high-concentration zones, extending along the X-axis (<span><math><msub><mi>L</mi><mi>X</mi></msub></math></span>) from 0.5 to 1.5 and the Y-axis (<span><math><msub><mi>L</mi><mi>Y</mi></msub></math></span>) from 0.4 to 1.6, were found to play a significant role. Simulations reveal that expanding these zones strengthens the velocity field, with <span><math><msub><mi>L</mi><mi>X</mi></msub><mo>=</mo><mn>1.5</mn></math></span> resulting in an approximate 35 % increase in flow speed, while smaller values reduce convective currents by up to 26 %. This expansion also enlarges temperature and concentration distributions within the cavity. However, a wider high-temperature and high-concentration region decreases the heat capacity ratio (<span><math><mi>Cr</mi></math></span>), while enhancing concentration gradients by 25 %, underscoring NEPCM's potential for optimized thermal and mass transfer. These findings highlight the effectiveness of NEPCM and tailored wavy geometries in achieving superior thermal management and uniform distributions within cavities, with promising applications in advanced thermal systems. Future work will focus on experimental validation and varied geometrical configurations to further refine and expand the model's applicability.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108383"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332401145X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the heat and mass transfer characteristics within a wavy porous cavity filled with nano-enhanced phase change materials (NEPCM), employing the incompressible smoothed particle hydrodynamics (ISPH) and XGBoost models. Key parameters, including the Darcy number (Da) ranging from 102 to 105, Rayleigh number (Ra) from 103 to 106, fusion temperature (θf) from 0.05 to 0.9, and Soret and Dufour numbers (Sr and Du) up to 0.6, were varied to analyze their impact on heat and mass transfer efficiency. Variable high-temperature and high-concentration zones, extending along the X-axis (LX) from 0.5 to 1.5 and the Y-axis (LY) from 0.4 to 1.6, were found to play a significant role. Simulations reveal that expanding these zones strengthens the velocity field, with LX=1.5 resulting in an approximate 35 % increase in flow speed, while smaller values reduce convective currents by up to 26 %. This expansion also enlarges temperature and concentration distributions within the cavity. However, a wider high-temperature and high-concentration region decreases the heat capacity ratio (Cr), while enhancing concentration gradients by 25 %, underscoring NEPCM's potential for optimized thermal and mass transfer. These findings highlight the effectiveness of NEPCM and tailored wavy geometries in achieving superior thermal management and uniform distributions within cavities, with promising applications in advanced thermal systems. Future work will focus on experimental validation and varied geometrical configurations to further refine and expand the model's applicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可变热区和高浓度区的波浪形多孔空腔中 NEPCM 的传热和传质:使用 ISPH 和 XGBoost 模型进行的研究
本研究采用不可压缩平滑粒子流体力学 (ISPH) 和 XGBoost 模型,研究了填充纳米增强相变材料 (NEPCM) 的波浪形多孔空腔内的传热和传质特性。主要参数包括达西数 (Da) 从 10-2 到 10-5,瑞利数 (Ra) 从 103 到 106,熔融温度 (θf) 从 0.05 到 0.9,以及索雷特数和杜富尔数 (Sr 和 Du) 高达 0.6,通过改变这些参数来分析它们对传热和传质效率的影响。结果发现,沿 X 轴(LX)从 0.5 扩展到 1.5,沿 Y 轴(LY)从 0.4 扩展到 1.6 的可变高温区和高浓度区起着重要作用。模拟显示,扩大这些区域会增强速度场,LX=1.5 会导致流速增加约 35%,而较小的数值则会使对流减少多达 26%。这种扩展还扩大了空腔内的温度和浓度分布。然而,更宽的高温和高浓度区域会降低热容比 (Cr),同时将浓度梯度提高 25%,这凸显了 NEPCM 在优化热量和质量传递方面的潜力。这些发现凸显了 NEPCM 和定制波浪形几何形状在实现卓越的热管理和空腔内均匀分布方面的有效性,在先进热系统中的应用前景广阔。未来的工作将侧重于实验验证和不同的几何配置,以进一步完善和扩大模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
Experimental and numerical study of turbulent fluid flow of jet impingement on a solid block in a confined duct with baffles Investigation of asymmetric heating in Poiseuille-Rayleigh-Bénard water flow: A numerical study Non-isothermal wicking in polymer sintered bead wicks: Experimentation, analytical solutions, and numerical validation Mechanistic model of wall heat transfer for vertical subcooled boiling flow Numerical research on geothermal energy extraction in backfilled mines by using the excellent heat transfer performance of loop heat pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1