Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-08-31 DOI:10.1016/j.cclet.2024.110389
Yan-Jiang Li, Shu-Lei Chou, Yao Xiao
{"title":"Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes","authors":"Yan-Jiang Li,&nbsp;Shu-Lei Chou,&nbsp;Yao Xiao","doi":"10.1016/j.cclet.2024.110389","DOIUrl":null,"url":null,"abstract":"<div><div>The detrimental phase transformations of sodium layered transition metal oxides (Na<sub>x</sub>TMO<sub>2</sub>) during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries (SIBs). Undoubtedly, comprehensively investigating of the dynamic crystal structure evolutions of Na<sub>x</sub>TMO<sub>2</sub> associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable. <em>In-situ</em> high-energy X-ray diffraction (HEXRD), a powerful technology to distinguish the crystal structure of electrode materials, has been widely used to identify the phase evolutions of Na<sub>x</sub>TMO<sub>2</sub> and then profoundly revealed the electrochemical reaction processes. In this review, we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction (XRD) over conventional XRD in detail. The optimizations of structural stability and electrochemical properties for P2-, O3-, and P2/O3-type Na<sub>x</sub>TMO<sub>2</sub> cathodes through single/dual-site substitution, high-entropy design, phase composition regulation, and surface engineering are summarized. The dynamic crystal structure evolutions of Na<sub>x</sub>TMO<sub>2</sub> polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded. The interior relationships between structure/component of Na<sub>x</sub>TMO<sub>2</sub> polytypes and their electrochemical properties are discussed. Finally, we look forward the research directions and issues in the route to improve the electrochemical properties of Na<sub>x</sub>TMO<sub>2</sub> cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques. This review will provide significant guidelines for rational designs of high-performance Na<sub>x</sub>TMO<sub>2</sub> cathodes.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110389"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724009082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The detrimental phase transformations of sodium layered transition metal oxides (NaxTMO2) during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries (SIBs). Undoubtedly, comprehensively investigating of the dynamic crystal structure evolutions of NaxTMO2 associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable. In-situ high-energy X-ray diffraction (HEXRD), a powerful technology to distinguish the crystal structure of electrode materials, has been widely used to identify the phase evolutions of NaxTMO2 and then profoundly revealed the electrochemical reaction processes. In this review, we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction (XRD) over conventional XRD in detail. The optimizations of structural stability and electrochemical properties for P2-, O3-, and P2/O3-type NaxTMO2 cathodes through single/dual-site substitution, high-entropy design, phase composition regulation, and surface engineering are summarized. The dynamic crystal structure evolutions of NaxTMO2 polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded. The interior relationships between structure/component of NaxTMO2 polytypes and their electrochemical properties are discussed. Finally, we look forward the research directions and issues in the route to improve the electrochemical properties of NaxTMO2 cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques. This review will provide significant guidelines for rational designs of high-performance NaxTMO2 cathodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于原位高能 X 射线衍射技术检测钠层状氧化物阴极的动态结构演变
钠层状过渡金属氧化物(NaxTMO2)在去阳极化/阳极化过程中的有害相变严重阻碍了其在钠离子电池(SIB)中的实际应用。毋庸置疑,全面研究 NaxTMO2 与 Na 离子萃取/插层相关的动态晶体结构演变,并在先进表征技术的支持下深入理解电化学性能与相结构之间的关系是必不可少的。原位高能 X 射线衍射(HEXRD)是一种区分电极材料晶体结构的强大技术,已被广泛用于识别 NaxTMO2 的相变,进而深刻揭示其电化学反应过程。在这篇综述中,我们首先介绍了同步辐射表征技术,然后详细介绍了同步辐射 X 射线衍射 (XRD) 相对于传统 XRD 的优势。总结了通过单/双位点置换、高熵设计、相组成调节和表面工程优化 P2-、O3- 和 P2/O3 型 NaxTMO2 阴极的结构稳定性和电化学性能。总结了 Na 离子萃取/插层过程中 NaxTMO2 多类型晶体结构的动态演变,以及通过 HEXRD 表征的相应结构增强机制。我们还讨论了 NaxTMO2 聚合物的结构/组分与其电化学特性之间的内部关系。最后,我们展望了未来改善用于 SIB 的 NaxTMO2 阴极电化学性能的研究方向和问题,以及多种表征技术的综合利用。本综述将为高性能 NaxTMO2 阴极的合理设计提供重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Corrigendum to “Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines” [Chinese Chemical Letters 33 (2022) 2736–2740] Corrigendum to “An overview of polymeric nanomicelles in clinical trials and on the market” [Chinese Chemical Letters 32 (2021) 243-257] Corrigendum to “Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis” [Chinese Chemical Letters 32 (2021) 1759-1764] Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1