Structural regulation strategies of nitrogen reduction electrocatalysts

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-11-01 DOI:10.1016/S1872-2067(24)60123-3
Siyu Chen, Jingqi Guan
{"title":"Structural regulation strategies of nitrogen reduction electrocatalysts","authors":"Siyu Chen,&nbsp;Jingqi Guan","doi":"10.1016/S1872-2067(24)60123-3","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia is a carrier of high energy density and a good hydrogen storage substance. The Haber-Bosch process accounts for 90% of the world's ammonia production, which relies on natural gas and fossil resources as energy sources, not only polluting the ecological environment, but also accelerating the consumption of resources. To explore new ways to synthesize ammonia and reduce carbon emissions, electrocatalytic nitrogen reduction reaction (NRR) to produce ammonia has been emerged owing to the advantages of environmental protection, low energy consumption and mild reaction conditions. Here, we systematize the NRR mechanisms, including dissociation mechanism, association mechanism (involving distal pathway, alternative path, and enzymatic mechanism), and Mars-van Krevelen mechanism. Then, theoretical calculations, performance parameters, synthesis methods, and types of NRR electrocatalysts are introduced in detail. Moreover, effective strategies to optimize the electronic structures of NRR electrocatalysts are emphatically discussed, including <em>d</em>-band center modulation (involving monoatomic dispersion, doping strategy, defect engineering, interface engineering, and strain effect), <em>p</em>-band center modulation, and other regulation strategies (involving construction of heterojunction, electron spin state modulation, phase interface engineering, and lithium ion mediation). Furthermore, we introduce NRR-related cell design and development. In addition, we evaluate relevant NRR experimental techniques, including N adsorption characterization techniques and methods for identification of active sites. Finally, the future challenges and opportunities concerning the improvement of NRR catalysts are outlined.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 20-52"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601233","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia is a carrier of high energy density and a good hydrogen storage substance. The Haber-Bosch process accounts for 90% of the world's ammonia production, which relies on natural gas and fossil resources as energy sources, not only polluting the ecological environment, but also accelerating the consumption of resources. To explore new ways to synthesize ammonia and reduce carbon emissions, electrocatalytic nitrogen reduction reaction (NRR) to produce ammonia has been emerged owing to the advantages of environmental protection, low energy consumption and mild reaction conditions. Here, we systematize the NRR mechanisms, including dissociation mechanism, association mechanism (involving distal pathway, alternative path, and enzymatic mechanism), and Mars-van Krevelen mechanism. Then, theoretical calculations, performance parameters, synthesis methods, and types of NRR electrocatalysts are introduced in detail. Moreover, effective strategies to optimize the electronic structures of NRR electrocatalysts are emphatically discussed, including d-band center modulation (involving monoatomic dispersion, doping strategy, defect engineering, interface engineering, and strain effect), p-band center modulation, and other regulation strategies (involving construction of heterojunction, electron spin state modulation, phase interface engineering, and lithium ion mediation). Furthermore, we introduce NRR-related cell design and development. In addition, we evaluate relevant NRR experimental techniques, including N adsorption characterization techniques and methods for identification of active sites. Finally, the future challenges and opportunities concerning the improvement of NRR catalysts are outlined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮还原电催化剂的结构调节策略
氨是一种能量密度很高的载体,也是一种很好的储氢物质。哈伯-博什法合成氨占世界合成氨产量的 90%,该工艺依赖天然气和化石资源作为能源,不仅污染生态环境,而且加速资源消耗。为了探索合成氨和减少碳排放的新途径,电催化氮还原反应(NRR)以其环保、能耗低、反应条件温和等优点,成为生产合成氨的新方法。在此,我们系统地介绍了氮还原反应的机理,包括解离机理、关联机理(涉及远端途径、替代途径和酶促机理)以及 Mars-van Krevelen 机理。然后,详细介绍了 NRR 电催化剂的理论计算、性能参数、合成方法和类型。此外,还重点讨论了优化 NRR 电催化剂电子结构的有效策略,包括 d 波段中心调控(涉及单原子分散、掺杂策略、缺陷工程、界面工程和应变效应)、p 波段中心调控和其他调控策略(涉及异质结构建、电子自旋态调控、相界面工程和锂离子调解)。此外,我们还介绍了与 NRR 相关的电池设计和开发。此外,我们还评估了相关的 NRR 实验技术,包括 N 吸附表征技术和活性位点识别方法。最后,我们还概述了改进氮还原催化剂的未来挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1