Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-11-01 DOI:10.1016/S1872-2067(24)60129-4
Shilei Wei , Hang Hua , Qingxuan Ren , Jingshan Luo
{"title":"Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer","authors":"Shilei Wei ,&nbsp;Hang Hua ,&nbsp;Qingxuan Ren ,&nbsp;Jingshan Luo","doi":"10.1016/S1872-2067(24)60129-4","DOIUrl":null,"url":null,"abstract":"<div><div>The electrochemical reduction of CO<sub>2</sub> holds considerable promise in combating global climate change while yielding valuable chemical commodities. Membrane electrode assemblies operating within acidic electrolyte have exhibited noteworthy advancements in CO<sub>2</sub> utilization efficiency, albeit encountering formidable competition from the hydrogen evolution reaction. In our investigation, we introduced a silicate buffer layer, which yielded exceptional outcomes even using strong acid electrolyte. Notably, our approach yielded a CO Faradic efficiency of 90% and reached a substantial current density of 400 mA cm<sup>–2</sup>. Furthermore, our system displayed remarkable stability over a 12-hour duration, and achieved a high single-pass-conversion efficiency of 67%. Leveraging <em>in-situ</em> Raman analysis, we attributed these performance enhancements to the augmented CO<sub>2</sub> adsorption and localized alkaline environment facilitated by the incorporation of the silicate buffer layer. We think the addition of buffer layer to adjust the microenvironment is essential to achieve high performance and keep stable in acid condition.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 139-145"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601294","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of CO2 holds considerable promise in combating global climate change while yielding valuable chemical commodities. Membrane electrode assemblies operating within acidic electrolyte have exhibited noteworthy advancements in CO2 utilization efficiency, albeit encountering formidable competition from the hydrogen evolution reaction. In our investigation, we introduced a silicate buffer layer, which yielded exceptional outcomes even using strong acid electrolyte. Notably, our approach yielded a CO Faradic efficiency of 90% and reached a substantial current density of 400 mA cm–2. Furthermore, our system displayed remarkable stability over a 12-hour duration, and achieved a high single-pass-conversion efficiency of 67%. Leveraging in-situ Raman analysis, we attributed these performance enhancements to the augmented CO2 adsorption and localized alkaline environment facilitated by the incorporation of the silicate buffer layer. We think the addition of buffer layer to adjust the microenvironment is essential to achieve high performance and keep stable in acid condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过硅酸盐缓冲层增强酸性电解质膜电极组件的二氧化碳电化学还原能力
二氧化碳的电化学还原在应对全球气候变化方面大有可为,同时还能产生宝贵的化工产品。在酸性电解质中运行的膜电极组件在二氧化碳利用效率方面取得了显著进步,尽管遇到了氢进化反应的激烈竞争。在我们的研究中,我们引入了硅酸盐缓冲层,即使使用强酸电解质也能产生卓越的效果。值得注意的是,我们的方法产生了 90% 的二氧化碳法拉第效率,并达到了 400 mA cm-2 的巨大电流密度。此外,我们的系统在 12 小时的持续时间内表现出卓越的稳定性,单次转换效率高达 67%。通过原位拉曼分析,我们将这些性能提升归因于硅酸盐缓冲层的加入促进了二氧化碳的吸附和局部碱性环境。我们认为,添加缓冲层来调节微环境对于实现高性能和在酸性条件下保持稳定至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1