Optimising lithium lanthanum cerate garnet ceramic electrolytes for fast lithium-ion conduction

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-21 DOI:10.1016/j.jpowsour.2024.235801
Zipei Wan , Ioanna M. Pateli , Gavin J. Irvine , David Miller , Ronald I. Smith , Robert Armstrong , Mihkel Vestli , Chengzhi Sun , JohnT.S. Irvine
{"title":"Optimising lithium lanthanum cerate garnet ceramic electrolytes for fast lithium-ion conduction","authors":"Zipei Wan ,&nbsp;Ioanna M. Pateli ,&nbsp;Gavin J. Irvine ,&nbsp;David Miller ,&nbsp;Ronald I. Smith ,&nbsp;Robert Armstrong ,&nbsp;Mihkel Vestli ,&nbsp;Chengzhi Sun ,&nbsp;JohnT.S. Irvine","doi":"10.1016/j.jpowsour.2024.235801","DOIUrl":null,"url":null,"abstract":"<div><div>The garnet-type electrolytes are promising for solid-state lithium-metal batteries, while it is still challenging to realize fast lithium-ion conduction with moderate sintering process. To solve the problem, we proposed a novel cerium (Ce)-based cubic garnet electrolyte – Li<sub>6.25</sub>La<sub>3</sub>Ce<sub>1.25</sub>Ta<sub>0.75</sub>O<sub>12</sub> (LLCTO-0.75). The Ta<sup>5+</sup> doping of the tetragonal Li<sub>7</sub>La<sub>3</sub>Ce<sub>2</sub>O<sub>12</sub> (LLCO) results in a stable cubic phase at room temperature, whilst the presence of Ce<sup>4+</sup> is associated with enlarging lattice parameters to facilitate lithium-ion migration and promoting sintering. As a result, the LLCTO-0.75 achieves a dense ceramic microstructure with only 30 min sintering at 1150 °C, and an outstanding lithium-ion conductivity of 1.09 mS cm<sup>−1</sup> at 30 °C. Benefiting from a small Li/LLCTO-0.75 interfacial resistance of 52.8 Ω cm<sup>2</sup> at 30 °C, the Li-Li symmetric cell cycles for over 700 h without short circuit, and the quasi-solid state LiFePO<sub>4</sub>/LLCTO 0.75/Li battery delivers a satisfying specific capacity of 127.0 mAh g<sup>−1</sup> after 300 cycles. This work provides new insights into the development of practical solid-state oxide electrolytes for safe high-energy batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"627 ","pages":"Article 235801"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017531","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The garnet-type electrolytes are promising for solid-state lithium-metal batteries, while it is still challenging to realize fast lithium-ion conduction with moderate sintering process. To solve the problem, we proposed a novel cerium (Ce)-based cubic garnet electrolyte – Li6.25La3Ce1.25Ta0.75O12 (LLCTO-0.75). The Ta5+ doping of the tetragonal Li7La3Ce2O12 (LLCO) results in a stable cubic phase at room temperature, whilst the presence of Ce4+ is associated with enlarging lattice parameters to facilitate lithium-ion migration and promoting sintering. As a result, the LLCTO-0.75 achieves a dense ceramic microstructure with only 30 min sintering at 1150 °C, and an outstanding lithium-ion conductivity of 1.09 mS cm−1 at 30 °C. Benefiting from a small Li/LLCTO-0.75 interfacial resistance of 52.8 Ω cm2 at 30 °C, the Li-Li symmetric cell cycles for over 700 h without short circuit, and the quasi-solid state LiFePO4/LLCTO 0.75/Li battery delivers a satisfying specific capacity of 127.0 mAh g−1 after 300 cycles. This work provides new insights into the development of practical solid-state oxide electrolytes for safe high-energy batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化镧铈石榴石锂陶瓷电解质,实现快速锂离子传导
石榴石型电解质在固态锂金属电池中大有可为,但要在适度烧结过程中实现锂离子的快速传导仍具有挑战性。为了解决这个问题,我们提出了一种新型铈(Ce)基立方石榴石电解质--Li6.25La3Ce1.25Ta0.75O12(LLCTO-0.75)。在四方 Li7La3Ce2O12(LLCO)中掺入 Ta5+ 可在室温下形成稳定的立方相,而 Ce4+ 的存在则会扩大晶格参数,从而促进锂离子迁移并促进烧结。因此,LLCTO-0.75 在 1150 °C 下烧结仅需 30 分钟,就能获得致密的陶瓷微观结构,并在 30 °C 下获得 1.09 mS cm-1 的出色锂离子电导率。由于锂/LLCTO-0.75 在 30 ℃ 时的界面电阻较小,仅为 52.8 Ω cm2,因此锂-锂对称电池可循环使用超过 700 小时而不会发生短路,并且准固态 LiFePO4/LLCTO 0.75/Li 电池在循环使用 300 次后可提供令人满意的 127.0 mAh g-1 比容量。这项工作为开发用于安全高能电池的实用固态氧化物电解质提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Large-scale preparation of amorphous silicon materials for high-stability lithium-ion battery anodes Optimising lithium lanthanum cerate garnet ceramic electrolytes for fast lithium-ion conduction Manufacturing of carbon-supported platinum cathodes for proton exchange membrane fuel cell using the doctor blade process: Microstructure and performance Redox-active a pyrene-4,5,9,10-tetraone and thienyltriazine-based conjugated microporous polymers for boosting faradaic supercapacitor energy storage Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1