Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2024-11-14 DOI:10.1016/j.aiia.2024.11.001
Fatima K. Abu Salem , Sara Awad , Yasmine Hamdar , Samer Kharroubi , Hadi Jaafar
{"title":"Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model","authors":"Fatima K. Abu Salem ,&nbsp;Sara Awad ,&nbsp;Yasmine Hamdar ,&nbsp;Samer Kharroubi ,&nbsp;Hadi Jaafar","doi":"10.1016/j.aiia.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating actual evapotranspiration (ETₐ) is crucial for water resource management, yet existing methods face limitations. Traditional approaches, including eddy covariance and remote sensing-based energy balance methods, often struggle with high costs, limited spatial and temporal coverage, and reduced predictive accuracy, particularly for classical empirical models. While machine learning has emerged as a promising alternative, it still presents challenges, notably in underestimating ETₐ during periods of high heat. We attribute this to insufficient learning on the rare but highly relevant ETₐ values of interest, or the not-so-big climatic datasets available for use. In this manuscript, we demonstrate how <em>few-shot, meta-learning models (MAML)</em> that are specifically designed for enhanced generalizability on not-so-big datasets can outperform basic machine learning models in upscaling ETₐ from two major in-situ towers, the Ameriflux and Euroflux. Using limited remotely sensed land surface data from the METRIC-EEFlux and limited climatic variables, we demonstrate that the chosen models can attain quantifiable utility within the <em>utility-based-regression</em> paradigm towards impactful practical considerations. Our initial explorations reveal that EEflux ETₐ deviates significantly from in-situ observations measured through the Ameriflux and EEflux towers (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>39</mn><mo>%</mo></math></span>). Instead, MAML shows best performance in approximating ETₐ than basic machine learning algorithms and EEFlux (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>71</mn><mo>%</mo></math></span> on entire testing dataset, <span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.88</mn></math></span> on the Csa climate, <span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.79</mn></math></span> on the Cfa climate, and <span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.78</mn></math></span> on the CSH vegetation class), and continues to improve without overfitting even when exposed to a relatively small training dataset. Its high F2 score (96 %) indicates that MAML has very high precision and recall for rare cases, which is significant for irrigation. Of independent interest, this study confirms that limited remotely sensed EEflux products contribute significantly to knowledge about ground truth ETₐ and can thus be of valuable use in settings where access to good quality and high-volume data is compromised.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"14 ","pages":"Pages 43-55"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating actual evapotranspiration (ETₐ) is crucial for water resource management, yet existing methods face limitations. Traditional approaches, including eddy covariance and remote sensing-based energy balance methods, often struggle with high costs, limited spatial and temporal coverage, and reduced predictive accuracy, particularly for classical empirical models. While machine learning has emerged as a promising alternative, it still presents challenges, notably in underestimating ETₐ during periods of high heat. We attribute this to insufficient learning on the rare but highly relevant ETₐ values of interest, or the not-so-big climatic datasets available for use. In this manuscript, we demonstrate how few-shot, meta-learning models (MAML) that are specifically designed for enhanced generalizability on not-so-big datasets can outperform basic machine learning models in upscaling ETₐ from two major in-situ towers, the Ameriflux and Euroflux. Using limited remotely sensed land surface data from the METRIC-EEFlux and limited climatic variables, we demonstrate that the chosen models can attain quantifiable utility within the utility-based-regression paradigm towards impactful practical considerations. Our initial explorations reveal that EEflux ETₐ deviates significantly from in-situ observations measured through the Ameriflux and EEflux towers (R2=39%). Instead, MAML shows best performance in approximating ETₐ than basic machine learning algorithms and EEFlux (R2=71% on entire testing dataset, R2=0.88 on the Csa climate, R2=0.79 on the Cfa climate, and R2=0.78 on the CSH vegetation class), and continues to improve without overfitting even when exposed to a relatively small training dataset. Its high F2 score (96 %) indicates that MAML has very high precision and recall for rare cases, which is significant for irrigation. Of independent interest, this study confirms that limited remotely sensed EEflux products contribute significantly to knowledge about ground truth ETₐ and can thus be of valuable use in settings where access to good quality and high-volume data is compromised.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于效用回归和元学习技术的实际蒸散发建模:与(METRIC-EEFLUX)模型的比较
估算实际蒸散量(ETₐ)对水资源管理至关重要,但现有方法存在局限性。传统方法,包括涡度协方差法和基于遥感的能量平衡法,往往成本高昂、时空覆盖范围有限、预测精度较低,尤其是对于经典的经验模型而言。虽然机器学习已成为一种很有前途的替代方法,但它仍然面临挑战,尤其是在高温期间低估了蒸散发。我们将其归咎于对罕见但高度相关的 ETₐ值学习不足,或可利用的气候数据集不大。在本手稿中,我们展示了在对两个主要原位塔--美国流量塔和欧洲流量塔--进行 ETₐ升级时,专为增强在不大的数据集上的泛化能力而设计的少镜头元学习模型(MAML)如何优于基本的机器学习模型。利用来自 METRIC-EEFlux 的有限遥感地表数据和有限的气候变量,我们证明了所选模型可以在基于效用的回归范式中获得可量化的效用,从而实现有影响力的实际考量。我们的初步探索表明,EEflux ETₐ与通过 Ameriflux 塔和 EEflux 塔测得的现场观测数据(R2=39%)有很大偏差。相反,与基本的机器学习算法和 EEFlux 相比,MAML 在近似 ETₐ 方面表现最佳(在整个测试数据集上 R2=71% ,在 Csa 气候上 R2=0.88 ,在 Cfa 气候上 R2=0.79 ,在 CSH 植被类别上 R2=0.78 )。其较高的 F2 分数(96 %)表明,MAML 对罕见情况具有很高的精确度和召回率,这对灌溉意义重大。这项研究还证实,有限的遥感 EEflux 产品对了解地面真实蒸散发有很大帮助,因此在无法获得高质量、高容量数据的情况下也能发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogenous property awared chicken woody breast classification and hardness regression Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1