{"title":"Thermomagneto-responsive injectable hydrogel for chondrogenic differentiation of mesenchymal stem cells","authors":"Parvin Najafi , Elnaz Tamjid , Parviz Abdolmaleki , Mehrdad Behmanesh","doi":"10.1016/j.bioadv.2024.214115","DOIUrl":null,"url":null,"abstract":"<div><div>Damaged cartilage tissue has a limited ability to self-heal due to its avascular nature and low cellularity. To effectively engineer cartilage tissue, innovative techniques such as injectable and interactive hydrogels using a minimally invasive approach are required to mimic the natural properties of cartilage. In this study, an injectable hydrogel containing magnetic iron oxide nanoparticles (MNPs) has been rationally designed to induce chondrogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) using an external magnetic field application. The effect of the incorporation of MNPs with the surface functional group of either carboxyl or amine on the properties of the hydrogels (denoted as HS and HA samples, respectively) has been investigated, and compared to control hydrogel without MNPs (denoted as H). The hydrogels demonstrated thermomagnetic-responsive and shear-thinning behavior. Incorporating MNPs in the hydrogel combination resulted in the formation of a more robust network with increased compressive modulus (by 2 and 2.5 times), cell viability (by 24 % and 7 %), swelling ratio (by 97 % and 42 %) for HS and HA, respectively, as well as better cell adhesion. Also, incorporating MNPs resulted in decreased elastic modulus (by 28 and 5 times), biodegradation rate (by 5 % and 9 %), and viscosity (by 4 and 20 times) for HS and HA, respectively. The results of glycosaminoglycans (GAG) staining indicated the synergistic effect of MNP incorporation and magnetic field application in improving chondrogenic differentiation of BMSCs in vitro. The research findings could lead to the development of superior injectable hydrogels and bioinks for tissue engineering applications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"168 ","pages":"Article 214115"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003583","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Damaged cartilage tissue has a limited ability to self-heal due to its avascular nature and low cellularity. To effectively engineer cartilage tissue, innovative techniques such as injectable and interactive hydrogels using a minimally invasive approach are required to mimic the natural properties of cartilage. In this study, an injectable hydrogel containing magnetic iron oxide nanoparticles (MNPs) has been rationally designed to induce chondrogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) using an external magnetic field application. The effect of the incorporation of MNPs with the surface functional group of either carboxyl or amine on the properties of the hydrogels (denoted as HS and HA samples, respectively) has been investigated, and compared to control hydrogel without MNPs (denoted as H). The hydrogels demonstrated thermomagnetic-responsive and shear-thinning behavior. Incorporating MNPs in the hydrogel combination resulted in the formation of a more robust network with increased compressive modulus (by 2 and 2.5 times), cell viability (by 24 % and 7 %), swelling ratio (by 97 % and 42 %) for HS and HA, respectively, as well as better cell adhesion. Also, incorporating MNPs resulted in decreased elastic modulus (by 28 and 5 times), biodegradation rate (by 5 % and 9 %), and viscosity (by 4 and 20 times) for HS and HA, respectively. The results of glycosaminoglycans (GAG) staining indicated the synergistic effect of MNP incorporation and magnetic field application in improving chondrogenic differentiation of BMSCs in vitro. The research findings could lead to the development of superior injectable hydrogels and bioinks for tissue engineering applications.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!