Time series forecasting of multiphase microstructure evolution using deep learning

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-18 DOI:10.1016/j.commatsci.2024.113518
Saurabh Tiwari , Prathamesh Satpute , Supriyo Ghosh
{"title":"Time series forecasting of multiphase microstructure evolution using deep learning","authors":"Saurabh Tiwari ,&nbsp;Prathamesh Satpute ,&nbsp;Supriyo Ghosh","doi":"10.1016/j.commatsci.2024.113518","DOIUrl":null,"url":null,"abstract":"<div><div>Microstructure evolution, which plays a critical role in determining materials properties, is commonly simulated by the high-fidelity but computationally expensive phase-field method. To address this, we approximate microstructure evolution as a time series forecasting problem within the domain of deep learning. Our approach involves implementing a cost-effective surrogate model that accurately predicts the spatiotemporal evolution of microstructures, taking an example of spinodal decomposition in binary and ternary mixtures. Our surrogate model combines a convolutional autoencoder to reduce the dimensional representation of these microstructures with convolutional recurrent neural networks to forecast their temporal evolution. We use different variants of recurrent neural networks to compare their efficacy in developing surrogate models for phase-field predictions. On average, our deep learning framework demonstrates excellent accuracy and speedup relative to the “ground truth” phase-field simulations. We use quantitative measures to demonstrate how surrogate model predictions can effectively replace the phase-field timesteps without compromising accuracy in predicting the long-term evolution trajectory. Additionally, by emulating a transfer learning approach, our framework performs satisfactorily in predicting new microstructures resulting from alloy composition and physics unknown to the model. Therefore, our approach offers a useful data-driven alternative and accelerator to the materials microstructure simulation workflow.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113518"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007390","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructure evolution, which plays a critical role in determining materials properties, is commonly simulated by the high-fidelity but computationally expensive phase-field method. To address this, we approximate microstructure evolution as a time series forecasting problem within the domain of deep learning. Our approach involves implementing a cost-effective surrogate model that accurately predicts the spatiotemporal evolution of microstructures, taking an example of spinodal decomposition in binary and ternary mixtures. Our surrogate model combines a convolutional autoencoder to reduce the dimensional representation of these microstructures with convolutional recurrent neural networks to forecast their temporal evolution. We use different variants of recurrent neural networks to compare their efficacy in developing surrogate models for phase-field predictions. On average, our deep learning framework demonstrates excellent accuracy and speedup relative to the “ground truth” phase-field simulations. We use quantitative measures to demonstrate how surrogate model predictions can effectively replace the phase-field timesteps without compromising accuracy in predicting the long-term evolution trajectory. Additionally, by emulating a transfer learning approach, our framework performs satisfactorily in predicting new microstructures resulting from alloy composition and physics unknown to the model. Therefore, our approach offers a useful data-driven alternative and accelerator to the materials microstructure simulation workflow.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习对多相微观结构演变进行时间序列预测
微观结构演化在决定材料性能方面起着至关重要的作用,通常采用高保真但计算成本高昂的相场方法进行模拟。为了解决这个问题,我们将微观结构演变近似视为深度学习领域的时间序列预测问题。我们的方法是以二元和三元混合物中的旋光分解为例,实施一种能准确预测微结构时空演变的经济高效的代理模型。我们的代用模型将卷积自动编码器与卷积递归神经网络相结合,前者用于降低这些微结构的维度表示,后者用于预测它们的时空演变。我们使用不同的递归神经网络变体来比较它们在开发相场预测代用模型方面的功效。平均而言,与 "地面实况 "相场模拟相比,我们的深度学习框架表现出卓越的准确性和速度。我们使用定量指标来证明代用模型预测如何在不影响长期演化轨迹预测准确性的情况下有效地替代相场时间步。此外,通过模仿迁移学习方法,我们的框架在预测模型未知的合金成分和物理特性所产生的新微观结构方面表现令人满意。因此,我们的方法为材料微观结构模拟工作流程提供了一种有用的数据驱动替代方法和加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1