High energy and rate capable supercapacitor of polyaniline / vanadium pentoxide nanocomposite and its green electrolyte

Aranganathan Viswanathan, Adka Nityananda Shetty
{"title":"High energy and rate capable supercapacitor of polyaniline / vanadium pentoxide nanocomposite and its green electrolyte","authors":"Aranganathan Viswanathan,&nbsp;Adka Nityananda Shetty","doi":"10.1016/j.nxsust.2024.100088","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of hybrid supercapacitors of combining the high energy density (<em>E</em>) of batteries and high power densities (<em>P</em>) of supercapacitors is better achieved with the PANI53.84 %/V<sub>2</sub>O<sub>5</sub>46.15 % nanocomposite (PV). As it exhibited a supercapacitor performance on par with that of Li – ion batteries. This high energy features of PV are achieved by the green approach of using the by-product obtained in the synthesis of electrode material as its electrolyte with and without modification. The energy storage parameters of PV in the presence of 1 M H<sub>2</sub>SO<sub>4</sub> (SA) as electrolyte, are very unique as they increased in quantity with increase in No. of energy storage/delivery cycles. The PV displayed an exceptional durability up to 20,500 cycles at 0.4 V s<sup><img>1</sup>, and specific capacity (<em>Q</em>) of 592.4 C g<sup><img>1</sup>, an <em>E</em> of 98.73 W h kg <sup><img>1</sup> (in the order of Li-ion batteries) and a <em>P</em> of 1.200 kW kg<sup><img>1</sup> at 1 A g<sup><img>1</sup> after 10,800 cycles in the presence of SA. A highest rate capability of 65.45 % up to 15 A g<sup><img>1</sup> is achieved when the by-product of PANI (SL of PANI) is used as the electrolyte for PV. When the by-product of PV is used as its electrolyte after its acidification with conc. methane sulphonic acid (MSA+SLPV), the <em>Q</em> of 388.0 C g<sup><img>1</sup>, an <em>E</em> of 64.66 W h kg<sup><img>1</sup> and a <em>P</em> of 1.200 kW kg<sup><img>1</sup> were achieved at 1 A g<sup><img>1</sup>. The MSA+SLPV also features the energy enhancement with increase in number of days.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of hybrid supercapacitors of combining the high energy density (E) of batteries and high power densities (P) of supercapacitors is better achieved with the PANI53.84 %/V2O546.15 % nanocomposite (PV). As it exhibited a supercapacitor performance on par with that of Li – ion batteries. This high energy features of PV are achieved by the green approach of using the by-product obtained in the synthesis of electrode material as its electrolyte with and without modification. The energy storage parameters of PV in the presence of 1 M H2SO4 (SA) as electrolyte, are very unique as they increased in quantity with increase in No. of energy storage/delivery cycles. The PV displayed an exceptional durability up to 20,500 cycles at 0.4 V s1, and specific capacity (Q) of 592.4 C g1, an E of 98.73 W h kg 1 (in the order of Li-ion batteries) and a P of 1.200 kW kg1 at 1 A g1 after 10,800 cycles in the presence of SA. A highest rate capability of 65.45 % up to 15 A g1 is achieved when the by-product of PANI (SL of PANI) is used as the electrolyte for PV. When the by-product of PV is used as its electrolyte after its acidification with conc. methane sulphonic acid (MSA+SLPV), the Q of 388.0 C g1, an E of 64.66 W h kg1 and a P of 1.200 kW kg1 were achieved at 1 A g1. The MSA+SLPV also features the energy enhancement with increase in number of days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚苯胺/五氧化二钒纳米复合材料及其绿色电解质的高能量、高倍率超级电容器
PANI53.84 %/V2O546.15 %纳米复合材料(PV)更好地实现了将电池的高能量密度(E)和超级电容器的高功率密度(P)相结合的混合超级电容器概念。其超级电容器性能与锂离子电池相当。PV 的这种高能量特性是通过使用合成电极材料过程中获得的副产品作为电解质(无论是否经过改性)这一绿色方法实现的。在以 1 M H2SO4(SA)为电解质的情况下,光伏电池的储能参数非常独特,因为它们随着储能/输电循环次数的增加而增加。在 0.4 V s1 的条件下,光伏电池的耐久性高达 20,500 次,比容量 (Q) 为 592.4 C g1,E 为 98.73 W h kg 1(与锂离子电池相当),P 为 1.200 kW kg1(1 A g1 条件下)。将 PANI 的副产品(PANI 的 SL)用作 PV 的电解液时,在 15 A g1 的条件下可达到 65.45% 的最高速率能力。当光伏的副产品用浓甲烷磺酸(MSA+SLPV)酸化后用作电解质时,在 1 A g1 的条件下,Q 值为 388.0 C g1,E 值为 64.66 W h kg1,P 值为 1.200 kW kg1。MSA+SLPV 还具有随着天数增加而提高能量的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and evaluation of a scalable decentralised greywater treatment technology for reuse, towards climate and WASH resilient urban communities Evaluating green operational efficiency of West African container ports along the belt and road initiative using super-efficiency SBM-DEA and Malmquist productivity index Pomegranate peel-derived AgNPs for enhanced food safety: Insights into eco-friendly synthesis, antimicrobial, anti-weevil, and jute sack functionalization applications A review of nano-bubble technology in washing: An ecological advancement of post-consumer recycled denim clothing Vegetation health analysis of hilly areas in Darjeeling District of West Bengal using analytical hierarchy process (1998–2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1