{"title":"3D shape reconstruction and generation of natural pozzolan particles","authors":"Bo Peng, Prabu Thannasi, Kemal Celik","doi":"10.1016/j.powtec.2024.120443","DOIUrl":null,"url":null,"abstract":"<div><div>Natural pozzolans are widely used in the construction industry due to their beneficial properties, including enhanced durability, increased long-term concrete strength, and contributions to sustainability by reducing Portland cement usage and carbon emissions. Additionally, they play a role in producing lunar regolith simulants due to their geochemical similarity to lunar regolith. While their physical and chemical characteristics are well-studied, the impact of particle morphology is significant. Understanding pozzolan particle shape and surface characteristics can optimize their reactivity, workability, and effectiveness in construction materials. Despite its importance, particle morphology is not widely assessed due to the fine scale of the particles. This paper presents a systematic approach to reconstruct and generate realistic pozzolan particles, offering valuable insights into their morphology and enhancing practical applications. Our proposed method, with its potential to improve numerical studies and serve as a foundation for pozzolan-related applications, holds promise for future construction materials and space applications.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"451 ","pages":"Article 120443"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010878","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural pozzolans are widely used in the construction industry due to their beneficial properties, including enhanced durability, increased long-term concrete strength, and contributions to sustainability by reducing Portland cement usage and carbon emissions. Additionally, they play a role in producing lunar regolith simulants due to their geochemical similarity to lunar regolith. While their physical and chemical characteristics are well-studied, the impact of particle morphology is significant. Understanding pozzolan particle shape and surface characteristics can optimize their reactivity, workability, and effectiveness in construction materials. Despite its importance, particle morphology is not widely assessed due to the fine scale of the particles. This paper presents a systematic approach to reconstruct and generate realistic pozzolan particles, offering valuable insights into their morphology and enhancing practical applications. Our proposed method, with its potential to improve numerical studies and serve as a foundation for pozzolan-related applications, holds promise for future construction materials and space applications.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.