A novel seismic-resistant design for track structures in the bridge-embankment transition zone of multi-span high-speed railways simply supported bridges
{"title":"A novel seismic-resistant design for track structures in the bridge-embankment transition zone of multi-span high-speed railways simply supported bridges","authors":"Lizhong Jiang , Bufan Zhong , Yuntai Zhang , Wangbao Zhou , Zhipeng Lai","doi":"10.1016/j.engstruct.2024.119349","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the lack of current Chinese seismic-resistant design principles and methods for track structures in the bridge-embankment transition zone of multi-span High-Speed Railway Simply Supported Bridges (HSRSBs), an area prone to high damage risk. To decouple the seismic-resistant design of track structures from bridge structures, the paper introduces the design principle of Negligible Change in Fundamental Frequency (NCF). Building on this principle, the paper proposes an easily implementable design approach called Friction Slab Extension (FSE), which reduces track internal forces by extending the length of the friction slab without requiring additional seismic-resistant equipment. Through numerical seismic simulations validated by experimental data, the effectiveness of FSE in reducing internal forces in the track of the bridge-embankment transition zone is confirmed. The study also determines the Recommended Length of Friction Slab (RLFS) for practical engineering implementation based on the response reduction limit. Seismic vulnerability analyses demonstrate that adopting the FSE with RLFS effectively mitigates the risk of track structure failure, evidenced by a 15 % reduction in exceedance probabilities under considerable levels. Importantly, this approach ensures that the seismic performance of the bridge components remains unaffected, in line with the expectations of the NCF principle. These findings underscore the efficacy of the FSE and the rationality of the NCF principle, offering valuable guidance for future design developments.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"324 ","pages":"Article 119349"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624019114","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the lack of current Chinese seismic-resistant design principles and methods for track structures in the bridge-embankment transition zone of multi-span High-Speed Railway Simply Supported Bridges (HSRSBs), an area prone to high damage risk. To decouple the seismic-resistant design of track structures from bridge structures, the paper introduces the design principle of Negligible Change in Fundamental Frequency (NCF). Building on this principle, the paper proposes an easily implementable design approach called Friction Slab Extension (FSE), which reduces track internal forces by extending the length of the friction slab without requiring additional seismic-resistant equipment. Through numerical seismic simulations validated by experimental data, the effectiveness of FSE in reducing internal forces in the track of the bridge-embankment transition zone is confirmed. The study also determines the Recommended Length of Friction Slab (RLFS) for practical engineering implementation based on the response reduction limit. Seismic vulnerability analyses demonstrate that adopting the FSE with RLFS effectively mitigates the risk of track structure failure, evidenced by a 15 % reduction in exceedance probabilities under considerable levels. Importantly, this approach ensures that the seismic performance of the bridge components remains unaffected, in line with the expectations of the NCF principle. These findings underscore the efficacy of the FSE and the rationality of the NCF principle, offering valuable guidance for future design developments.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.