Dynamic modeling of the interfacial bonding strength of CFRP composites detected by laser shockwave

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-11-23 DOI:10.1016/j.optlastec.2024.112184
Hebin Wu , Mengyu Cao , Fuxaing Liu , Zhang Chong , Yongkang Zhang
{"title":"Dynamic modeling of the interfacial bonding strength of CFRP composites detected by laser shockwave","authors":"Hebin Wu ,&nbsp;Mengyu Cao ,&nbsp;Fuxaing Liu ,&nbsp;Zhang Chong ,&nbsp;Yongkang Zhang","doi":"10.1016/j.optlastec.2024.112184","DOIUrl":null,"url":null,"abstract":"<div><div>The bonding interface serves as the stress load transfer surface of the key bonding structural component of offshore engineering equipment, making its quality detection crucial for ensuring strength and service safety. The laser shock adhesion test is an effective method to detect the bonding quality in the local range by pulsed laser-induced high strain rate shockwave. However, this process requires attention to the propagation and failure mechanism of shockwaves to better understand the energy reference level of spalling in bonded structures. Under laser shock, a combination of simulation and experimental methods was employed to investigate the impact of laser energy and pulse width on the damage characteristics of symmetrically bonded laminated plates with varying thicknesses of bonding plates, elucidating the layered damage mechanism induced by laser shock. It has been observed that the thickness of the bonding plate exhibits a correlation with both the location of damage and the laser energy threshold, under unchanged laser parameters. The thicker the bonding plate, the higher the laser energy threshold becomes, and gradually, the initial location of damage shifts from the impact back to the adhesive layer. With the increase of pulse width, the damage location of the spalling moves from the impact back to the impact surface, and the spalling area increases. The thicker the bonding plate of the symmetrical bonded structure, the greater the selected pulse width, which can enhance spalling effectiveness. Laser energy plays a crucial role in determining spalling outcomes, with higher laser energy resulting in increased spalling damage. The modulation of laser energy and pulse width offers a viable approach for employing the laser shock adhesion testing in non-destructive testing of weak bonding within different material thicknesses composite material bonded structures.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112184"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224016426","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The bonding interface serves as the stress load transfer surface of the key bonding structural component of offshore engineering equipment, making its quality detection crucial for ensuring strength and service safety. The laser shock adhesion test is an effective method to detect the bonding quality in the local range by pulsed laser-induced high strain rate shockwave. However, this process requires attention to the propagation and failure mechanism of shockwaves to better understand the energy reference level of spalling in bonded structures. Under laser shock, a combination of simulation and experimental methods was employed to investigate the impact of laser energy and pulse width on the damage characteristics of symmetrically bonded laminated plates with varying thicknesses of bonding plates, elucidating the layered damage mechanism induced by laser shock. It has been observed that the thickness of the bonding plate exhibits a correlation with both the location of damage and the laser energy threshold, under unchanged laser parameters. The thicker the bonding plate, the higher the laser energy threshold becomes, and gradually, the initial location of damage shifts from the impact back to the adhesive layer. With the increase of pulse width, the damage location of the spalling moves from the impact back to the impact surface, and the spalling area increases. The thicker the bonding plate of the symmetrical bonded structure, the greater the selected pulse width, which can enhance spalling effectiveness. Laser energy plays a crucial role in determining spalling outcomes, with higher laser energy resulting in increased spalling damage. The modulation of laser energy and pulse width offers a viable approach for employing the laser shock adhesion testing in non-destructive testing of weak bonding within different material thicknesses composite material bonded structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过激光冲击波检测 CFRP 复合材料界面粘接强度的动态建模
粘接界面是海洋工程装备关键粘接结构件的应力载荷传递面,其质量检测对确保强度和使用安全至关重要。激光冲击粘接试验是通过脉冲激光诱导的高应变率冲击波在局部范围内检测粘接质量的一种有效方法。然而,这一过程需要关注冲击波的传播和破坏机理,以更好地了解粘接结构剥落的能量参考水平。在激光冲击下,采用模拟和实验相结合的方法,研究了激光能量和脉冲宽度对不同粘结板厚度的对称粘结层压板损伤特性的影响,阐明了激光冲击诱导的分层损伤机理。研究发现,在激光参数不变的情况下,粘接板的厚度与损伤位置和激光能量阈值都有相关性。粘合板越厚,激光能量阈值就越高,并且最初的损伤位置逐渐从冲击层转移到粘合层。随着脉冲宽度的增加,剥落的损伤位置从撞击后方转移到撞击表面,剥落面积增大。对称粘接结构的粘接板越厚,选择的脉冲宽度就越大,这样就能提高剥落效果。激光能量在决定剥落结果方面起着至关重要的作用,激光能量越高,剥落损伤越大。激光能量和脉冲宽度的调节为采用激光冲击附着力测试对不同材料厚度复合材料粘接结构内的薄弱粘接进行无损检测提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Long-term high-precision monitoring system for laser parameters in large-aperture dual-wavelength LiDAR Ablation-cooling effect during nanosecond laser precision machining of CFRP Bulk damage growth characteristics and ultrafast diagnosis of fluoride-containing phosphate glasses induced by 355-nm laser A robust feature-based full-field initial value estimation in path-independent digital image correlation for large deformation measurement High-quality Fourier single-pixel imaging via a block-scanning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1