Na4+x[Sn1-xYxSi3.8P0.2O12]glass-ceramic electrolyte: Structure correlation with Interfacial resistance and electrochemical performance

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-11-14 DOI:10.1016/j.chphi.2024.100782
K C Acharyulu Srinivasula , Vamsi Krishna Katta , S. Bharadwaj , BalajiRao Ravuri
{"title":"Na4+x[Sn1-xYxSi3.8P0.2O12]glass-ceramic electrolyte: Structure correlation with Interfacial resistance and electrochemical performance","authors":"K C Acharyulu Srinivasula ,&nbsp;Vamsi Krishna Katta ,&nbsp;S. Bharadwaj ,&nbsp;BalajiRao Ravuri","doi":"10.1016/j.chphi.2024.100782","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation focuses on preparing glass and glass-ceramic Na<sub>4+x</sub>[Sn<sub>1-x</sub>Y<sub>x</sub>Si<sub>3.8</sub> P<sub>0.2</sub>O<sub>12</sub>; labeled as GC-NSY<sub>x</sub>] electrolytes with different molar percentages (<em>x</em> = 0, 0.2, 0.5, 0.7, and 1.0 mol%). The preparation done using melt quenching and subsequent heat treatments designed to enhance conductivity. The Rhombohedral Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> (ICSD-20271) phase, within the space group R3̅c, emerged as the most stable and effective ion-conducting phase. In particular, the best ion conducting G-NSY<sub>1.0</sub> glass electrolyte (σ<sub>b</sub> = 2.88 × 10<sup>–5</sup> S/cm) composition,further improved after heat treating it for 9 hours at its crystallization temperature (T<sub>c</sub>) (GC-NSY<sub>1.0</sub>-9h; ΔT = 156 °C; σ<sub>b</sub> = 4.89 × 10<sup>–4</sup> S/cm) with superior thermal stability. Interestingly, the similarity between E<sub>aτ</sub> and E<sub>aσ</sub>values indicates that both conductivity and relaxation mechanisms involve only ionic hopping. A full cell configuration using a NaMnO<sub>2</sub>: GC-NSY<sub>1.0</sub>-9h electrolyte with a Na–Sn alloy anode in a 7:3 ratio (GC-NSY<sub>1.0</sub>-9h electrolyte/anode) exhibited the lowest interfacial resistance of 145 ohms and achieved a specific capacity of 97 mAhg<sup>–1</sup>at 0.1C rate. This full cell also displayed excellent stability, irreversible capacity, and Coulombic efficiency (96 %) over 500 cycles which can be attributed to underlying oxidation and reduction reactions occurring during longer term cycling.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100782"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation focuses on preparing glass and glass-ceramic Na4+x[Sn1-xYxSi3.8 P0.2O12; labeled as GC-NSYx] electrolytes with different molar percentages (x = 0, 0.2, 0.5, 0.7, and 1.0 mol%). The preparation done using melt quenching and subsequent heat treatments designed to enhance conductivity. The Rhombohedral Na5YSi4O12 (ICSD-20271) phase, within the space group R3̅c, emerged as the most stable and effective ion-conducting phase. In particular, the best ion conducting G-NSY1.0 glass electrolyte (σb = 2.88 × 10–5 S/cm) composition,further improved after heat treating it for 9 hours at its crystallization temperature (Tc) (GC-NSY1.0-9h; ΔT = 156 °C; σb = 4.89 × 10–4 S/cm) with superior thermal stability. Interestingly, the similarity between E and Evalues indicates that both conductivity and relaxation mechanisms involve only ionic hopping. A full cell configuration using a NaMnO2: GC-NSY1.0-9h electrolyte with a Na–Sn alloy anode in a 7:3 ratio (GC-NSY1.0-9h electrolyte/anode) exhibited the lowest interfacial resistance of 145 ohms and achieved a specific capacity of 97 mAhg–1at 0.1C rate. This full cell also displayed excellent stability, irreversible capacity, and Coulombic efficiency (96 %) over 500 cycles which can be attributed to underlying oxidation and reduction reactions occurring during longer term cycling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Na4+x[Sn1-xYxSi3.8P0.2O12]玻璃陶瓷电解质:结构与界面电阻和电化学性能的相关性
这项研究的重点是制备不同摩尔百分比(x = 0、0.2、0.5、0.7 和 1.0 摩尔%)的玻璃和玻璃陶瓷 Na4+x[Sn1-xYxSi3.8 P0.2O12;标记为 GC-NSYx]电解质。制备过程采用熔体淬火和后续热处理,旨在提高导电性。空间群 R3̅c内的斜方体 Na5YSi4O12(ICSD-20271)相成为最稳定、最有效的离子导电相。特别是在结晶温度 (Tc) 下热处理 9 小时后,离子导电性能最佳的 G-NSY1.0 玻璃电解质(σb = 2.88 × 10-5 S/cm)成分得到了进一步改善(GC-NSY1.0-9h;ΔT = 156 ℃;σb = 4.89 × 10-4 S/cm),具有极佳的热稳定性。有趣的是,Eaτ 和 Eaσ 值之间的相似性表明,导电性和弛豫机制都只涉及离子跳跃。使用 NaMnO2 的全电池配置:GC-NSY1.0-9h 电解质与 Na-Sn 合金阳极的比例为 7:3(GC-NSY1.0-9h 电解质/阳极),显示出 145 欧姆的最低界面电阻,并在 0.1C 速率下实现了 97 毫安时-1 的比容量。这种全电池在 500 次循环后还显示出卓越的稳定性、不可逆容量和库仑效率(96%),这可归因于长期循环过程中发生的潜在氧化和还原反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Exploring phytoconstituent for confronting the symptoms of polycystic ovarian syndrome: molecular dynamics simulation, quantum studies, free energy calculations and network analysis approaches First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries Quantum chemical investigations into the structural and spectroscopic properties of choline chloride-based deep eutectic solvents Enhanced photocatalytic degradation of LaMnO3/rGO nanocomposites under the irradiation of solar spectrum for methylene blue Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1