Na4+x[Sn1-xYxSi3.8P0.2O12]glass-ceramic electrolyte: Structure correlation with Interfacial resistance and electrochemical performance

IF 4.3 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-11-14 DOI:10.1016/j.chphi.2024.100782
K C Acharyulu Srinivasula , Vamsi Krishna Katta , S. Bharadwaj , BalajiRao Ravuri
{"title":"Na4+x[Sn1-xYxSi3.8P0.2O12]glass-ceramic electrolyte: Structure correlation with Interfacial resistance and electrochemical performance","authors":"K C Acharyulu Srinivasula ,&nbsp;Vamsi Krishna Katta ,&nbsp;S. Bharadwaj ,&nbsp;BalajiRao Ravuri","doi":"10.1016/j.chphi.2024.100782","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation focuses on preparing glass and glass-ceramic Na<sub>4+x</sub>[Sn<sub>1-x</sub>Y<sub>x</sub>Si<sub>3.8</sub> P<sub>0.2</sub>O<sub>12</sub>; labeled as GC-NSY<sub>x</sub>] electrolytes with different molar percentages (<em>x</em> = 0, 0.2, 0.5, 0.7, and 1.0 mol%). The preparation done using melt quenching and subsequent heat treatments designed to enhance conductivity. The Rhombohedral Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> (ICSD-20271) phase, within the space group R3̅c, emerged as the most stable and effective ion-conducting phase. In particular, the best ion conducting G-NSY<sub>1.0</sub> glass electrolyte (σ<sub>b</sub> = 2.88 × 10<sup>–5</sup> S/cm) composition,further improved after heat treating it for 9 hours at its crystallization temperature (T<sub>c</sub>) (GC-NSY<sub>1.0</sub>-9h; ΔT = 156 °C; σ<sub>b</sub> = 4.89 × 10<sup>–4</sup> S/cm) with superior thermal stability. Interestingly, the similarity between E<sub>aτ</sub> and E<sub>aσ</sub>values indicates that both conductivity and relaxation mechanisms involve only ionic hopping. A full cell configuration using a NaMnO<sub>2</sub>: GC-NSY<sub>1.0</sub>-9h electrolyte with a Na–Sn alloy anode in a 7:3 ratio (GC-NSY<sub>1.0</sub>-9h electrolyte/anode) exhibited the lowest interfacial resistance of 145 ohms and achieved a specific capacity of 97 mAhg<sup>–1</sup>at 0.1C rate. This full cell also displayed excellent stability, irreversible capacity, and Coulombic efficiency (96 %) over 500 cycles which can be attributed to underlying oxidation and reduction reactions occurring during longer term cycling.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100782"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation focuses on preparing glass and glass-ceramic Na4+x[Sn1-xYxSi3.8 P0.2O12; labeled as GC-NSYx] electrolytes with different molar percentages (x = 0, 0.2, 0.5, 0.7, and 1.0 mol%). The preparation done using melt quenching and subsequent heat treatments designed to enhance conductivity. The Rhombohedral Na5YSi4O12 (ICSD-20271) phase, within the space group R3̅c, emerged as the most stable and effective ion-conducting phase. In particular, the best ion conducting G-NSY1.0 glass electrolyte (σb = 2.88 × 10–5 S/cm) composition,further improved after heat treating it for 9 hours at its crystallization temperature (Tc) (GC-NSY1.0-9h; ΔT = 156 °C; σb = 4.89 × 10–4 S/cm) with superior thermal stability. Interestingly, the similarity between E and Evalues indicates that both conductivity and relaxation mechanisms involve only ionic hopping. A full cell configuration using a NaMnO2: GC-NSY1.0-9h electrolyte with a Na–Sn alloy anode in a 7:3 ratio (GC-NSY1.0-9h electrolyte/anode) exhibited the lowest interfacial resistance of 145 ohms and achieved a specific capacity of 97 mAhg–1at 0.1C rate. This full cell also displayed excellent stability, irreversible capacity, and Coulombic efficiency (96 %) over 500 cycles which can be attributed to underlying oxidation and reduction reactions occurring during longer term cycling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Na4+x[Sn1-xYxSi3.8P0.2O12]玻璃陶瓷电解质:结构与界面电阻和电化学性能的相关性
这项研究的重点是制备不同摩尔百分比(x = 0、0.2、0.5、0.7 和 1.0 摩尔%)的玻璃和玻璃陶瓷 Na4+x[Sn1-xYxSi3.8 P0.2O12;标记为 GC-NSYx]电解质。制备过程采用熔体淬火和后续热处理,旨在提高导电性。空间群 R3̅c内的斜方体 Na5YSi4O12(ICSD-20271)相成为最稳定、最有效的离子导电相。特别是在结晶温度 (Tc) 下热处理 9 小时后,离子导电性能最佳的 G-NSY1.0 玻璃电解质(σb = 2.88 × 10-5 S/cm)成分得到了进一步改善(GC-NSY1.0-9h;ΔT = 156 ℃;σb = 4.89 × 10-4 S/cm),具有极佳的热稳定性。有趣的是,Eaτ 和 Eaσ 值之间的相似性表明,导电性和弛豫机制都只涉及离子跳跃。使用 NaMnO2 的全电池配置:GC-NSY1.0-9h 电解质与 Na-Sn 合金阳极的比例为 7:3(GC-NSY1.0-9h 电解质/阳极),显示出 145 欧姆的最低界面电阻,并在 0.1C 速率下实现了 97 毫安时-1 的比容量。这种全电池在 500 次循环后还显示出卓越的稳定性、不可逆容量和库仑效率(96%),这可归因于长期循环过程中发生的潜在氧化和还原反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
From static to tunable: Strain-engineered functional modulation in Mg3PX3(X = I, Br, Cl, and F) inorganic perovskites using first-principles calculations Fe₂O₃/NiO/C nanocomposite synthesis via the coprecipitation method for the photocatalytic degradation of methylene blue dye: synergetic effect Design, synthesis and computational evaluation of 1,2,3-triazole-Schiff base hybrid as AKT1 inhibitor for breast cancer Cobalt phosphide decorated on nickel foam as an efficient electrocatalyst for oxygen evolution, ethylene glycol oxidation, and polyethylene terephthalate plastic waste upcycling Characterization of carbon catalyst from palm kernel shell supported by cesium phosphotungstate for glycerol acetylation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1