Vincenzo Schiano Di Cola , Vittorio Bauduin , Marco Berardi , Filippo Notarnicola , Salvatore Cuomo
{"title":"Investigating neural networks with groundwater flow equation loss","authors":"Vincenzo Schiano Di Cola , Vittorio Bauduin , Marco Berardi , Filippo Notarnicola , Salvatore Cuomo","doi":"10.1016/j.matcom.2024.10.039","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-Informed Neural Networks (PINNs) are considered a powerful tool for solving partial differential equations (PDEs), particularly for the groundwater flow (GF) problem. In this paper, we investigate how the deep learning (DL) architecture, within the PINN framework, is connected to the ability to compute a more or less accurate numerical GF solution, so the link ‘PINN architecture - numerical performance’ is explored. Specifically, this paper explores the effect of various DL components, such as different activation functions and neural network structures, on the computational framework. Through numerical results and on the basis of some theoretical foundations of PINNs, this research aims to improve the explicability of PINNs to resolve, in this case, the one-dimensional GF equation. Moreover, our problem involves source terms described by a Dirac delta function, providing insights into the role of DL architecture in solving complex PDEs.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 80-93"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004373","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-Informed Neural Networks (PINNs) are considered a powerful tool for solving partial differential equations (PDEs), particularly for the groundwater flow (GF) problem. In this paper, we investigate how the deep learning (DL) architecture, within the PINN framework, is connected to the ability to compute a more or less accurate numerical GF solution, so the link ‘PINN architecture - numerical performance’ is explored. Specifically, this paper explores the effect of various DL components, such as different activation functions and neural network structures, on the computational framework. Through numerical results and on the basis of some theoretical foundations of PINNs, this research aims to improve the explicability of PINNs to resolve, in this case, the one-dimensional GF equation. Moreover, our problem involves source terms described by a Dirac delta function, providing insights into the role of DL architecture in solving complex PDEs.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.