Effects of climate change and methane-rich fluid activity on sedimentary sulfur geochemical records in the northern South China Sea since mid-Pleistocene
{"title":"Effects of climate change and methane-rich fluid activity on sedimentary sulfur geochemical records in the northern South China Sea since mid-Pleistocene","authors":"Junxi Feng , Yufei Zhang , Niu Li , Jianhou Zhou , Jinqiang Liang , Qianyong Liang , Shengxiong Yang , Duofu Chen , Harunur Rashid","doi":"10.1016/j.gloplacha.2024.104644","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial sulfate reduction (MSR) and associated pyritic sulfide formation are important diagenetic processes in marine sediments. The sulfur isotopic composition of pyrite (δ<sup>34</sup>S<sub>pyr</sub>) is proven to be sensitive to changes in sedimentation rates and the content and reactivity of organic carbon, especially on the continental shelves and upper slopes (water depth < 350 m). However, the diagenetic responses of sulfur to variations in climatic and depositional conditions in the deep-sea sediments are still poorly understood. This study combines element contents and isotopes to characterize diagenetic interplays of sulfur, organic carbon, and methane in the continental slope sediments of the northern South China Sea since the mid-Pleistocene. Our data suggest that the total organic carbon (TOC) increased during glacial times, implying enhanced primary productivity due to increased nutrient supply by the East Asian Winter Monsoon, in addition to efficient transfer of organic carbon and better preservation of organic carbon due to reduced bottom water oxygen. Total sulfur and chromium reduction sulfur contents varied concomitantly with the TOC, suggesting an increased burial of organic carbon that enhanced the organoclastic sulfate reduction (OSR) and the formation of authigenic pyrite. The environmental changes did not induce a significant shift in δ<sup>34</sup>S<sub>pyr</sub>, due most likely to relatively low sedimentation rates and large fractionation in sulfur isotope through OSR during the glacial-interglacial cycles. Instead, it is hypothesized that the sulfate-driven anaerobic methane oxidation promoted the formation of a higher amount of authigenic pyrite. Consequently, it created a closed diagenetic system leading to positive excursions in δ<sup>34</sup>S<sub>pyr</sub> at the sulfate-methane transition zone. Our results suggest the vulnerability of pyrite formation and its sulfur isotopic composition to the changes in monsoon-driven primary productivity and the methane-rich fluid migrations in the continental margin sediments. This study complements the growing evidence for the local diagenetic controls on sedimentary sulfur geochemical records by highlighting the importance of early diagenesis in paleoenvironment reconstruction based on the content and sulfur isotopic composition of pyrite.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"244 ","pages":"Article 104644"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124002911","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial sulfate reduction (MSR) and associated pyritic sulfide formation are important diagenetic processes in marine sediments. The sulfur isotopic composition of pyrite (δ34Spyr) is proven to be sensitive to changes in sedimentation rates and the content and reactivity of organic carbon, especially on the continental shelves and upper slopes (water depth < 350 m). However, the diagenetic responses of sulfur to variations in climatic and depositional conditions in the deep-sea sediments are still poorly understood. This study combines element contents and isotopes to characterize diagenetic interplays of sulfur, organic carbon, and methane in the continental slope sediments of the northern South China Sea since the mid-Pleistocene. Our data suggest that the total organic carbon (TOC) increased during glacial times, implying enhanced primary productivity due to increased nutrient supply by the East Asian Winter Monsoon, in addition to efficient transfer of organic carbon and better preservation of organic carbon due to reduced bottom water oxygen. Total sulfur and chromium reduction sulfur contents varied concomitantly with the TOC, suggesting an increased burial of organic carbon that enhanced the organoclastic sulfate reduction (OSR) and the formation of authigenic pyrite. The environmental changes did not induce a significant shift in δ34Spyr, due most likely to relatively low sedimentation rates and large fractionation in sulfur isotope through OSR during the glacial-interglacial cycles. Instead, it is hypothesized that the sulfate-driven anaerobic methane oxidation promoted the formation of a higher amount of authigenic pyrite. Consequently, it created a closed diagenetic system leading to positive excursions in δ34Spyr at the sulfate-methane transition zone. Our results suggest the vulnerability of pyrite formation and its sulfur isotopic composition to the changes in monsoon-driven primary productivity and the methane-rich fluid migrations in the continental margin sediments. This study complements the growing evidence for the local diagenetic controls on sedimentary sulfur geochemical records by highlighting the importance of early diagenesis in paleoenvironment reconstruction based on the content and sulfur isotopic composition of pyrite.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.