Gas-liquid flow rates measurement based on dual differential pressures of a power-driven swirler

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-20 DOI:10.1016/j.measurement.2024.116276
Haocun Wang, Qiang Xu, Xuemei Zhang, Xiaojun Ma, Lulu Li, Liejin Guo
{"title":"Gas-liquid flow rates measurement based on dual differential pressures of a power-driven swirler","authors":"Haocun Wang,&nbsp;Qiang Xu,&nbsp;Xuemei Zhang,&nbsp;Xiaojun Ma,&nbsp;Lulu Li,&nbsp;Liejin Guo","doi":"10.1016/j.measurement.2024.116276","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, swirlers have gained increasing attention in gas–liquid flow rates measurement. A power-driven swirler device is designed suitable for low gas–liquid flow rates conditions. Variation characteristics of swirler differential pressure (<span><math><mrow><mi>Δ</mi><msub><mi>P</mi><mi>s</mi></msub></mrow></math></span>) and radial differential pressure (<span><math><mrow><mi>Δ</mi><msub><mi>P</mi><mi>r</mi></msub></mrow></math></span>) are investigated under three swirler rotational speeds (0, 300, and 600 rpm). An average reduction of 9 % and 15 % can be seen in fluctuations of <span><math><mrow><mi>Δ</mi><msub><mi>P</mi><mi>s</mi></msub></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msub><mi>P</mi><mi>r</mi></msub></mrow></math></span> signals, respectively. Wider measurement range can be achieved by increasing the rotational speed, the minimum liquid superficial velocity decreases from 1.53 m/s to 1.02 m/s and the maximum gas volume fraction increases from 41.8 % to 51.9 %. Then, a new gas–liquid flow rate measurement model is established considering the gas–liquid slip and interfacial interaction. As the rotational speed increases from 0 to 600 rpm, the relative errors of liquid and gas mass flow rates decrease from ± 3.4 % to ± 2.7 % and ± 24 % to ± 10 %, respectively.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116276"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021614","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, swirlers have gained increasing attention in gas–liquid flow rates measurement. A power-driven swirler device is designed suitable for low gas–liquid flow rates conditions. Variation characteristics of swirler differential pressure (ΔPs) and radial differential pressure (ΔPr) are investigated under three swirler rotational speeds (0, 300, and 600 rpm). An average reduction of 9 % and 15 % can be seen in fluctuations of ΔPs and ΔPr signals, respectively. Wider measurement range can be achieved by increasing the rotational speed, the minimum liquid superficial velocity decreases from 1.53 m/s to 1.02 m/s and the maximum gas volume fraction increases from 41.8 % to 51.9 %. Then, a new gas–liquid flow rate measurement model is established considering the gas–liquid slip and interfacial interaction. As the rotational speed increases from 0 to 600 rpm, the relative errors of liquid and gas mass flow rates decrease from ± 3.4 % to ± 2.7 % and ± 24 % to ± 10 %, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动力驱动漩涡器双压差的气液流速测量技术
近年来,漩涡器在气液流量测量中越来越受到关注。动力驱动漩涡装置设计适用于低气液流速条件。研究了三种漩涡转速(0、300 和 600 rpm)下漩涡压差(ΔPs)和径向压差(ΔPr)的变化特征。结果表明,ΔPs 和 ΔPr 信号的波动分别平均降低了 9% 和 15%。通过提高转速可以获得更宽的测量范围,最小液体表面速度从 1.53 m/s 降至 1.02 m/s,最大气体体积分数从 41.8 % 增至 51.9 %。然后,考虑到气液滑移和界面相互作用,建立了新的气液流速测量模型。随着转速从 0 转/分增加到 600 转/分,液体和气体质量流量的相对误差分别从 ± 3.4 % 和 ± 24 % 下降到 ± 2.7 % 和 ± 10 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1