Xiao Xiao , Yitian Wang , Tingyu Li , Qiang Wang , Xiaolei Luo , Jingdong Li , Linbo Gao
{"title":"Microproteins encoded by short open reading frames: Vital regulators in neurological diseases","authors":"Xiao Xiao , Yitian Wang , Tingyu Li , Qiang Wang , Xiaolei Luo , Jingdong Li , Linbo Gao","doi":"10.1016/j.pneurobio.2024.102694","DOIUrl":null,"url":null,"abstract":"<div><div>Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as “transcriptional noise”. However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"243 ","pages":"Article 102694"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224001308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as “transcriptional noise”. However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.