Research and application on deep learning-based point cloud completion for marine structures with point coordinate fusion and coordinate-supervised point cloud generator

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-16 DOI:10.1016/j.measurement.2024.116246
Shuo Han , Shengqi Yu , Xiaobo Zhang , Luotao Zhang , Chunqing Ran , Qianran Zhang , Hongyu Li
{"title":"Research and application on deep learning-based point cloud completion for marine structures with point coordinate fusion and coordinate-supervised point cloud generator","authors":"Shuo Han ,&nbsp;Shengqi Yu ,&nbsp;Xiaobo Zhang ,&nbsp;Luotao Zhang ,&nbsp;Chunqing Ran ,&nbsp;Qianran Zhang ,&nbsp;Hongyu Li","doi":"10.1016/j.measurement.2024.116246","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of missing point clouds is prevalent in the actual point clouds of Marine Structures (MS) obtained based on three-dimensional laser scanning technology. To achieve the completion tasks for MS, this paper proposes a deep learning network, MS-PCN, and builds a point cloud completion dataset, MS-dataset. MS-PCN employs both point coordinate fusion module and coordinate-supervised point cloud generator to improve the accuracy of point cloud completion for MS. Extensive experiments conducted on MS-dataset and public dataset ShapeNet-55 demonstrate the effectiveness of MS-PCN in point cloud completion within scenarios featuring MS as well as its generalizability in other scenarios. MS-PCN achieved a Chamfer Distance (CD) of 0.31 and an F-score of 0.58 on MS-dataset and a CD of 0.70 and an F-score of 0.505 on ShapeNet-55 dataset. Furthermore, point cloud completion could serve as a valuable precursor to the surface reconstruction of MS, improving its reconstruction accuracy and visualization effects.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116246"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021316","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of missing point clouds is prevalent in the actual point clouds of Marine Structures (MS) obtained based on three-dimensional laser scanning technology. To achieve the completion tasks for MS, this paper proposes a deep learning network, MS-PCN, and builds a point cloud completion dataset, MS-dataset. MS-PCN employs both point coordinate fusion module and coordinate-supervised point cloud generator to improve the accuracy of point cloud completion for MS. Extensive experiments conducted on MS-dataset and public dataset ShapeNet-55 demonstrate the effectiveness of MS-PCN in point cloud completion within scenarios featuring MS as well as its generalizability in other scenarios. MS-PCN achieved a Chamfer Distance (CD) of 0.31 and an F-score of 0.58 on MS-dataset and a CD of 0.70 and an F-score of 0.505 on ShapeNet-55 dataset. Furthermore, point cloud completion could serve as a valuable precursor to the surface reconstruction of MS, improving its reconstruction accuracy and visualization effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的海洋结构点云补全与点坐标融合及坐标监督点云生成器的研究与应用
基于三维激光扫描技术获得的海洋结构(MS)实际点云普遍存在点云缺失的问题。为实现 MS 的补全任务,本文提出了一种深度学习网络 MS-PCN,并建立了点云补全数据集 MS-dataset。MS-PCN 采用点坐标融合模块和坐标监督点云生成器来提高 MS 的点云完成精度。在 MS 数据集和公共数据集 ShapeNet-55 上进行的大量实验证明了 MS-PCN 在以 MS 为特征的场景中完成点云的有效性,以及在其他场景中的通用性。MS-PCN 在 MS 数据集上的倒角距离(CD)为 0.31,F-score 为 0.58;在 ShapeNet-55 数据集上的倒角距离(CD)为 0.70,F-score 为 0.505。此外,点云补全可作为 MS 表面重建的重要先导,提高其重建精度和可视化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1