Construction of W1-Zn dinuclear sites to boost nitrite electroreduction to ammonia

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-13 DOI:10.1016/j.jechem.2024.10.054
Zhuohang Li , Ying Zhang , Xiang Li , Ruizhi Liang , Ye Tian , Ke Chu
{"title":"Construction of W1-Zn dinuclear sites to boost nitrite electroreduction to ammonia","authors":"Zhuohang Li ,&nbsp;Ying Zhang ,&nbsp;Xiang Li ,&nbsp;Ruizhi Liang ,&nbsp;Ye Tian ,&nbsp;Ke Chu","doi":"10.1016/j.jechem.2024.10.054","DOIUrl":null,"url":null,"abstract":"<div><div>Electroreduction of nitrite to ammonia (NO<sub>2</sub>RR) is recognized as an appealing method for achieving renewable NH<sub>3</sub> production and waste NO<sub>2</sub><sup>−</sup> removal. Herein, monodispersed W-doped ZnO (W<sub>1</sub>-ZnO) is developed as an efficient NO<sub>2</sub>RR catalyst. Theoretical simulations and in situ spectroscopic measurements unravel that the enhanced NO<sub>2</sub>RR property of W<sub>1</sub>-ZnO originates from the creation of active W<sub>1</sub>-Zn dinuclear sites to selectively activate NO<sub>2</sub><sup>−</sup> and enhance the protonation energetics of NO<sub>2</sub><sup>−</sup>-to-NH<sub>3</sub> pathway, whilst repelling the competing H<sub>2</sub> evolution. Strikingly, W<sub>1</sub>-ZnO equipped in flow cell shows an impressive NO<sub>2</sub>RR performance with NH<sub>3</sub> yield rate of 970 μmol h<sup>−1</sup> cm<sup>−2</sup> and NH<sub>3</sub>-Faradaic efficiency of 94.5%.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 302-308"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007617","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Electroreduction of nitrite to ammonia (NO2RR) is recognized as an appealing method for achieving renewable NH3 production and waste NO2 removal. Herein, monodispersed W-doped ZnO (W1-ZnO) is developed as an efficient NO2RR catalyst. Theoretical simulations and in situ spectroscopic measurements unravel that the enhanced NO2RR property of W1-ZnO originates from the creation of active W1-Zn dinuclear sites to selectively activate NO2 and enhance the protonation energetics of NO2-to-NH3 pathway, whilst repelling the competing H2 evolution. Strikingly, W1-ZnO equipped in flow cell shows an impressive NO2RR performance with NH3 yield rate of 970 μmol h−1 cm−2 and NH3-Faradaic efficiency of 94.5%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建 W1-Zn 双核位点,促进亚硝酸盐电还原成氨
亚硝酸盐电还原为氨(NO2RR)被认为是实现可再生 NH3 生产和清除废弃 NO2- 的一种有吸引力的方法。本文开发了单分散掺杂 W 的氧化锌(W1-ZnO),作为一种高效的 NO2RR 催化剂。理论模拟和原位光谱测量揭示了 W1-ZnO 的 NO2RR 增强特性源于活性 W1-Zn 二核位点的产生,它能选择性地激活 NO2-,增强 NO2-到 NH3 途径的质子化能量,同时排斥竞争性的 H2 演化。引人注目的是,在流动池中装备的 W1-ZnO 显示出令人印象深刻的 NO2RR 性能,NH3 产率达到 970 μmol h-1 cm-2,NH3-Faradaic 效率达到 94.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1