N-doped porous graphite with multilevel pore defects and ultra-high conductivity anchoring Pt nanoparticles for proton exchange membrane water electrolyzers

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-06 DOI:10.1016/j.jechem.2024.10.041
Yu Hao , Dongfang Chen , Guangxin Yang , Song Hu , Shunyu Wang , Pucheng Pei , Jinkai Hao , Xiaoming Xu
{"title":"N-doped porous graphite with multilevel pore defects and ultra-high conductivity anchoring Pt nanoparticles for proton exchange membrane water electrolyzers","authors":"Yu Hao ,&nbsp;Dongfang Chen ,&nbsp;Guangxin Yang ,&nbsp;Song Hu ,&nbsp;Shunyu Wang ,&nbsp;Pucheng Pei ,&nbsp;Jinkai Hao ,&nbsp;Xiaoming Xu","doi":"10.1016/j.jechem.2024.10.041","DOIUrl":null,"url":null,"abstract":"<div><div>Water electrolysis for hydrogen production offers a promising solution to future energy crises and environmental challenges. Although platinum is an efficient catalyst for hydrogen evolution reactions (HERs), its high cost and stability challenges limit its widespread use. A novel platinum-based catalyst, comprising platinum nanoparticles on nitrogen-doped porous graphite (Pt-N-porous graphite), addresses these limitations. This catalyst prevents nanoparticle aggregation, provides a high specific surface area of 1308 m<sup>2</sup> g<sup>−1</sup>, and enhances mass transfer and active site exposure. Additionally, it exhibits superior electrical conductivity compared to commercial Pt-C, enhancing charge transfer efficiency. The Pt-N-porous graphite catalyst achieves an overpotential of 99 mV at 100 mA cm<sup>−2</sup> and maintains stable performance after 10,000 cycles. Applied as a catalyst-coated membrane (CCM) in a proton exchange membrane (PEM) electrolyzer, it demonstrates excellent performance. Thus, the industrially synthesizable Pt-N-porous graphite catalyst holds great potential for large-scale energy applications.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 290-301"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007460","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Water electrolysis for hydrogen production offers a promising solution to future energy crises and environmental challenges. Although platinum is an efficient catalyst for hydrogen evolution reactions (HERs), its high cost and stability challenges limit its widespread use. A novel platinum-based catalyst, comprising platinum nanoparticles on nitrogen-doped porous graphite (Pt-N-porous graphite), addresses these limitations. This catalyst prevents nanoparticle aggregation, provides a high specific surface area of 1308 m2 g−1, and enhances mass transfer and active site exposure. Additionally, it exhibits superior electrical conductivity compared to commercial Pt-C, enhancing charge transfer efficiency. The Pt-N-porous graphite catalyst achieves an overpotential of 99 mV at 100 mA cm−2 and maintains stable performance after 10,000 cycles. Applied as a catalyst-coated membrane (CCM) in a proton exchange membrane (PEM) electrolyzer, it demonstrates excellent performance. Thus, the industrially synthesizable Pt-N-porous graphite catalyst holds great potential for large-scale energy applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有多级孔缺陷和超高导电率的 N 掺杂多孔石墨锚定用于质子交换膜水电解器的铂纳米粒子
水电解制氢为解决未来的能源危机和环境挑战提供了一个前景广阔的解决方案。虽然铂是氢进化反应(HERs)的高效催化剂,但其高昂的成本和稳定性问题限制了它的广泛应用。一种新型铂基催化剂,包括掺氮多孔石墨(Pt-N-多孔石墨)上的铂纳米颗粒,解决了这些限制。这种催化剂可防止纳米颗粒聚集,提供 1308 m2 g-1 的高比表面积,并增强传质和活性位点暴露。此外,与商用 Pt-C 相比,它还具有更高的导电性,从而提高了电荷转移效率。Pt-N 多孔石墨催化剂在 100 mA cm-2 时的过电位为 99 mV,并在 10,000 次循环后仍能保持稳定的性能。在质子交换膜(PEM)电解槽中作为催化剂涂层膜(CCM)应用时,它表现出卓越的性能。因此,可工业合成的 Pt-N 多孔石墨催化剂在大规模能源应用方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1