Indium oxide buffer layer for perovskite/Si 4-terminal tandem solar cells with efficiency exceeding 30%

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-06 DOI:10.1016/j.jechem.2024.10.037
Liming Du , Can Li , Yuhui Jiang , Fangfang Cao , Chunmei Jia , Zhi Wan , Rui Meng , Jishan Shi , Chuanxiao Xiao , Zhe Liu , Zhen Li
{"title":"Indium oxide buffer layer for perovskite/Si 4-terminal tandem solar cells with efficiency exceeding 30%","authors":"Liming Du ,&nbsp;Can Li ,&nbsp;Yuhui Jiang ,&nbsp;Fangfang Cao ,&nbsp;Chunmei Jia ,&nbsp;Zhi Wan ,&nbsp;Rui Meng ,&nbsp;Jishan Shi ,&nbsp;Chuanxiao Xiao ,&nbsp;Zhe Liu ,&nbsp;Zhen Li","doi":"10.1016/j.jechem.2024.10.037","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite/Si tandem solar cells (TSCs) present great potential to surpass the Shockley-Queisser limit of single-junction solar cells for further advancing the power conversion efficiency (PCE) of solar cells. However, the fabrication of TSCs usually encounters challenge of selecting suitable sputtering buffer layer (SBL) to prevent the bombardment during the transparent electrode deposition. Herein, we introduce an indium oxide (In<sub>2</sub>O<sub>3</sub>) buffer layer via e-beam deposition to fabricate semi-transparent perovskite solar cells (ST-PSCs). The optical transmittance and electrical conductivity of In<sub>2</sub>O<sub>3</sub> highly depend on the deposition rate. High deposition rate results in high ratio of metallic indium in the film, which causes severe parasitic absorption. A 20 nm-thick In<sub>2</sub>O<sub>3</sub> film deposited at lower rate demonstrated high conductivity, transmittance and robust protection during sputtering. A 1.68 eV ST-PSC incorporating this In<sub>2</sub>O<sub>3</sub> buffer layer exhibits a champion PCE of 20.20%, demonstrating the excellent optoelectronic and protective properties of In<sub>2</sub>O<sub>3</sub>. When combined with a Si subcell, the 4-terminal TSC obtains a remarkable PCE of 30.04%. Importantly, the unencapsulated ST-PSC maintained 80% of initial PCE after 423 h of continuous light soaking in N<sub>2</sub>. This work has provided a facile and instrumental transparent SBL strategy for perovskite/Si TSCs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 189-196"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007423","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite/Si tandem solar cells (TSCs) present great potential to surpass the Shockley-Queisser limit of single-junction solar cells for further advancing the power conversion efficiency (PCE) of solar cells. However, the fabrication of TSCs usually encounters challenge of selecting suitable sputtering buffer layer (SBL) to prevent the bombardment during the transparent electrode deposition. Herein, we introduce an indium oxide (In2O3) buffer layer via e-beam deposition to fabricate semi-transparent perovskite solar cells (ST-PSCs). The optical transmittance and electrical conductivity of In2O3 highly depend on the deposition rate. High deposition rate results in high ratio of metallic indium in the film, which causes severe parasitic absorption. A 20 nm-thick In2O3 film deposited at lower rate demonstrated high conductivity, transmittance and robust protection during sputtering. A 1.68 eV ST-PSC incorporating this In2O3 buffer layer exhibits a champion PCE of 20.20%, demonstrating the excellent optoelectronic and protective properties of In2O3. When combined with a Si subcell, the 4-terminal TSC obtains a remarkable PCE of 30.04%. Importantly, the unencapsulated ST-PSC maintained 80% of initial PCE after 423 h of continuous light soaking in N2. This work has provided a facile and instrumental transparent SBL strategy for perovskite/Si TSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于珍珠光泽石/硅 4 端串联太阳能电池的氧化铟缓冲层,效率超过 30
过氧化物/硅串联太阳能电池(TSCs)具有超越单结太阳能电池肖克利-奎塞尔极限的巨大潜力,可进一步提高太阳能电池的功率转换效率(PCE)。然而,TSCs 的制造通常会遇到选择合适的溅射缓冲层(SBL)以防止透明电极沉积过程中发生轰击的难题。在此,我们通过电子束沉积引入了氧化铟(In2O3)缓冲层,以制造半透明过氧化物太阳能电池(ST-PSCs)。In2O3 的透光率和导电率在很大程度上取决于沉积速率。高沉积速率会导致薄膜中金属铟的比例过高,从而引起严重的寄生吸收。以较低沉积速率沉积的 20 nm 厚的 In2O3 薄膜在溅射过程中表现出较高的导电性、透射率和稳健的保护性能。含有这种 In2O3 缓冲层的 1.68 eV ST-PSC 显示出 20.20% 的冠军 PCE,证明了 In2O3 卓越的光电和保护特性。当与硅子电池相结合时,4 端 TSC 的 PCE 达到了 30.04% 的优异水平。重要的是,未封装的 ST-PSC 在氮气中连续光浸泡 423 小时后,仍能保持 80% 的初始 PCE。这项工作为包晶石/硅 TSC 提供了一种简便易行的透明 SBL 策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1