In situ evolved phase and heterostructure boosting nitrate to ammonia synthesis for enhanced energy supply in Zn-NO3− battery

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-10-29 DOI:10.1016/j.jechem.2024.10.023
Chunming Yang , Feng Yue , Tingting Wei , Xiang Li , Wangchuan Zhu , Chuantao Wang , Yanzhong Zhen , Feng Fu , Yucang Liang
{"title":"In situ evolved phase and heterostructure boosting nitrate to ammonia synthesis for enhanced energy supply in Zn-NO3− battery","authors":"Chunming Yang ,&nbsp;Feng Yue ,&nbsp;Tingting Wei ,&nbsp;Xiang Li ,&nbsp;Wangchuan Zhu ,&nbsp;Chuantao Wang ,&nbsp;Yanzhong Zhen ,&nbsp;Feng Fu ,&nbsp;Yucang Liang","doi":"10.1016/j.jechem.2024.10.023","DOIUrl":null,"url":null,"abstract":"<div><div>Revealing the dynamic reconfiguration of catalysts and the evolution of active species during catalysis, elucidating and regulating the reconfiguration mechanism are paramount to the development of high-performance electrochemical nitrate reduction (NO<sub>3</sub>RR) to ammonia. In-situ characterizations can precisely track reaction process and unveil the origin of activity enhancement. Here, in-situ reconstruction of pre-catalyst Co<sub>3</sub>O<sub>4</sub> fabricates a stable heterojunction Co(OH)<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> to boost NO<sub>3</sub>RR to ammonia. In-situ generated heterojunction accelerates the transformation of *NO<sub>3</sub> to *NO<sub>2</sub>, while Co(OH)<sub>2</sub> promotes the dissociation of water to active *H species for the hydrogenation of *N species, and thereby improving the deoxygenation and hydrogenation ability of NO<sub>3</sub>RR to NH<sub>3</sub> and achieving a high Faradaic efficiency (FE) about 96.2% and a high NH<sub>3</sub> production rate of 218.5 μmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> at −0.3 V. Density functional theory (DFT) calculations verified that in-situ formed active species Co(OH)<sub>2</sub> on Co<sub>3</sub>O<sub>4</sub> markedly decreased the energy barrier of *NO<sub>3</sub> → *NO<sub>2</sub> and accelerated the hydrogenation step of *NH → *NH<sub>2</sub> → *NH<sub>3</sub>. Co(OH)<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> heterostructure-based Zn-NO<sub>3</sub><sup>−</sup> cell achieves excellent energy supply (1.22 V), a high ammonia yield rate (48.9 µmol h<sup>−1</sup> cm<sup>−2</sup>), and a high FE (91%). The establishment of the structure–activity relationship during NO<sub>3</sub>RR provides guidance for designing advanced electrode materials, and the in-situ evolution of species on the electrode surface unveils the intrinsic nature of improved catalytic performance.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 73-83"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Revealing the dynamic reconfiguration of catalysts and the evolution of active species during catalysis, elucidating and regulating the reconfiguration mechanism are paramount to the development of high-performance electrochemical nitrate reduction (NO3RR) to ammonia. In-situ characterizations can precisely track reaction process and unveil the origin of activity enhancement. Here, in-situ reconstruction of pre-catalyst Co3O4 fabricates a stable heterojunction Co(OH)2/Co3O4 to boost NO3RR to ammonia. In-situ generated heterojunction accelerates the transformation of *NO3 to *NO2, while Co(OH)2 promotes the dissociation of water to active *H species for the hydrogenation of *N species, and thereby improving the deoxygenation and hydrogenation ability of NO3RR to NH3 and achieving a high Faradaic efficiency (FE) about 96.2% and a high NH3 production rate of 218.5 μmol h−1 mgcat−1 at −0.3 V. Density functional theory (DFT) calculations verified that in-situ formed active species Co(OH)2 on Co3O4 markedly decreased the energy barrier of *NO3 → *NO2 and accelerated the hydrogenation step of *NH → *NH2 → *NH3. Co(OH)2/Co3O4 heterostructure-based Zn-NO3 cell achieves excellent energy supply (1.22 V), a high ammonia yield rate (48.9 µmol h−1 cm−2), and a high FE (91%). The establishment of the structure–activity relationship during NO3RR provides guidance for designing advanced electrode materials, and the in-situ evolution of species on the electrode surface unveils the intrinsic nature of improved catalytic performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位演化相和异质结构促进硝酸-氨合成,增强 Zn-NO3 电池的能量供应
揭示催化剂的动态重构和催化过程中活性物种的演变,阐明和调节重构机制,对于开发高性能电化学硝酸盐还原(NO3RR)制氨技术至关重要。原位表征可以精确跟踪反应过程并揭示活性增强的起源。在这里,原位重构前催化剂 Co3O4 制造出了稳定的异质结 Co(OH)2/Co3O4,从而促进了 NO3RR 到氨的反应。原位生成的异质结加速了*NO3向*NO2的转化,而Co(OH)2则促进水解离成活性*H物种,用于*N物种的氢化,从而提高了NO3RR向NH3的脱氧和氢化能力,实现了约96.密度泛函理论(DFT)计算证实,在 Co3O4 上原位形成的活性物种 Co(OH)2 显著降低了 *NO3 → *NO2 的能垒,加速了 *NH → *NH2 → *NH3 的氢化步骤。基于 Co(OH)2/Co3O4 异质结构的 Zn-NO3- 电池实现了出色的能量供应(1.22 V)、高氨产率(48.9 µmol h-1 cm-2)和高 FE(91%)。建立 NO3RR 过程中的结构-活性关系为设计先进的电极材料提供了指导,而电极表面物种的原位演化揭示了催化性能改善的内在本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1