Zesheng Zang , Zhonghui Li , Yue Niu , Shan Yin , Xiangguo Kong
{"title":"Study on the Electric potential response of coal seam damage under mining Influence: A Case from laboratory to field testing","authors":"Zesheng Zang , Zhonghui Li , Yue Niu , Shan Yin , Xiangguo Kong","doi":"10.1016/j.measurement.2024.116244","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the electrical potential (EP) response of coal mining process and its corresponding relationship with mining disturbances is of great significance for the safety construction of coal mining. In this paper, laboratory experiments and field tests on stress coal EP response were conducted. According to experimental findings, the EP intensity increases with the increase of stress level, and a sudden increase in EP occurs when local fracture happens. During stress wave loading, the EP exhibits periodic fluctuation characteristics. With the attenuation of stress waves, the EP shows exponential decay characteristics. Near the main fault zone, localized strain features are observed, leading to the generation of anomalous EP regions with densely packed contour lines. As the mining working face continues to advance, the stress gradually increases, the EP signal shows a “step-like” periodic upward trend. Significant variations in EP intensity exist across measuring points, yet the overarching evolution trends remain consistent. The intensity and distribution of the EP signal can reflect the stress state and damage of the mining working surface.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116244"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021298","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the electrical potential (EP) response of coal mining process and its corresponding relationship with mining disturbances is of great significance for the safety construction of coal mining. In this paper, laboratory experiments and field tests on stress coal EP response were conducted. According to experimental findings, the EP intensity increases with the increase of stress level, and a sudden increase in EP occurs when local fracture happens. During stress wave loading, the EP exhibits periodic fluctuation characteristics. With the attenuation of stress waves, the EP shows exponential decay characteristics. Near the main fault zone, localized strain features are observed, leading to the generation of anomalous EP regions with densely packed contour lines. As the mining working face continues to advance, the stress gradually increases, the EP signal shows a “step-like” periodic upward trend. Significant variations in EP intensity exist across measuring points, yet the overarching evolution trends remain consistent. The intensity and distribution of the EP signal can reflect the stress state and damage of the mining working surface.
期刊介绍:
Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.