{"title":"Extended black hole solutions in Rastall theory of gravity","authors":"M. Sharif , M. Sallah","doi":"10.1016/j.ascom.2024.100897","DOIUrl":null,"url":null,"abstract":"<div><div>We utilize the gravitational decoupling via the extended geometric deformation to extend the Schwarzschild vacuum solution to new black holes in Rastall theory. By employing linear transformations that deform both the temporal and radial coefficients of the metric, the field equations with a dual matter source are successfully decoupled into two sets. The first of these sets is described by the metric for the vacuum Schwarzschild spacetime, while the second set corresponds to the added extra source. Three extended solutions are obtained using two restrictions on the metric potentials and extra source, respectively. For selected values of the Rastall and decoupling parameters, we study the impact of the fluctuation of these parameters on the obtained models. We also investigate the asymptotic flatness of the resulting spacetimes by analysis of the metric coefficients. Finally, the nature of the additional source is explored for each model, via analysis of the energy conditions. It is found among other results that none of the obtained models satisfy the energy conditions, while only the model corresponding to the barotropic equation of state mimics an asymptotically flat spacetime.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"50 ","pages":"Article 100897"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724001124","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We utilize the gravitational decoupling via the extended geometric deformation to extend the Schwarzschild vacuum solution to new black holes in Rastall theory. By employing linear transformations that deform both the temporal and radial coefficients of the metric, the field equations with a dual matter source are successfully decoupled into two sets. The first of these sets is described by the metric for the vacuum Schwarzschild spacetime, while the second set corresponds to the added extra source. Three extended solutions are obtained using two restrictions on the metric potentials and extra source, respectively. For selected values of the Rastall and decoupling parameters, we study the impact of the fluctuation of these parameters on the obtained models. We also investigate the asymptotic flatness of the resulting spacetimes by analysis of the metric coefficients. Finally, the nature of the additional source is explored for each model, via analysis of the energy conditions. It is found among other results that none of the obtained models satisfy the energy conditions, while only the model corresponding to the barotropic equation of state mimics an asymptotically flat spacetime.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.