Yan Wang , Zhihe Xiao , Jian Gu , Weibin Sun , Junyang Jin , Xin Sun
{"title":"Metal organic frameworks derived core-shell structured C@TiC nanocomposites with excellent microwave absorption performance","authors":"Yan Wang , Zhihe Xiao , Jian Gu , Weibin Sun , Junyang Jin , Xin Sun","doi":"10.1016/j.oceram.2024.100700","DOIUrl":null,"url":null,"abstract":"<div><div>With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperature. Effects of various metal/linker ratio, solvent types and Hacac addition on the microstructures and properties of the C@TiC nanocomposites were thoroughly investigated, demonstrating that the TiC core-C shell structure could be effectively tailored. Compared to pure TiC nanoparticles, the C@TiC nanocomposites exhibited significantly improved microwave absorption performance, including the stronger <em>RL</em> peak of -35.64 dB (10.72 GHz) at 2.4 mm thicknesses and the enhanced effective microwave wave absorption width (EAB, <em>RL</em>≤-10 dB) spanning the entire C-band and X-band, which is ascribed to the better impedance matching and richer microwave loss mechanisms. As a result, C@TiC nanocomposites show great potential to be applied as absorbers with strong microwave absorption and wide absorption bandwidth.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100700"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperature. Effects of various metal/linker ratio, solvent types and Hacac addition on the microstructures and properties of the C@TiC nanocomposites were thoroughly investigated, demonstrating that the TiC core-C shell structure could be effectively tailored. Compared to pure TiC nanoparticles, the C@TiC nanocomposites exhibited significantly improved microwave absorption performance, including the stronger RL peak of -35.64 dB (10.72 GHz) at 2.4 mm thicknesses and the enhanced effective microwave wave absorption width (EAB, RL≤-10 dB) spanning the entire C-band and X-band, which is ascribed to the better impedance matching and richer microwave loss mechanisms. As a result, C@TiC nanocomposites show great potential to be applied as absorbers with strong microwave absorption and wide absorption bandwidth.