On improvements of multi-objective branch and bound

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2024-01-01 DOI:10.1016/j.ejco.2024.100099
Julius Bauß , Sophie N. Parragh , Michael Stiglmayr
{"title":"On improvements of multi-objective branch and bound","authors":"Julius Bauß ,&nbsp;Sophie N. Parragh ,&nbsp;Michael Stiglmayr","doi":"10.1016/j.ejco.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><div>Branch and bound methods which are based on the principle “divide and conquer” are a well established solution approach in single-objective integer programming. In multi-objective optimization, branch and bound algorithms are increasingly attracting interest. However, the larger number of objectives raises additional difficulties for implicit enumeration approaches like branch and bound. Since bounding and pruning is considerably weaker in multiple objectives, many branches have to be (partially) searched and may not be pruned directly. The adaptive use of objective space information can guide the search in promising directions to determine a good approximation of the Pareto front already in early stages of the algorithm. In particular, we focus in this article on improving the branching and queuing of subproblems and the handling of lower bound sets.</div><div>In our numerical tests, we evaluate the impact of the proposed methods in comparison to a standard implementation of multi-objective branch and bound on knapsack problems, generalized assignment problems and (un)capacitated facility location problems.</div></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100099"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440624000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Branch and bound methods which are based on the principle “divide and conquer” are a well established solution approach in single-objective integer programming. In multi-objective optimization, branch and bound algorithms are increasingly attracting interest. However, the larger number of objectives raises additional difficulties for implicit enumeration approaches like branch and bound. Since bounding and pruning is considerably weaker in multiple objectives, many branches have to be (partially) searched and may not be pruned directly. The adaptive use of objective space information can guide the search in promising directions to determine a good approximation of the Pareto front already in early stages of the algorithm. In particular, we focus in this article on improving the branching and queuing of subproblems and the handling of lower bound sets.
In our numerical tests, we evaluate the impact of the proposed methods in comparison to a standard implementation of multi-objective branch and bound on knapsack problems, generalized assignment problems and (un)capacitated facility location problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论多目标分支与约束的改进
基于 "分而治之 "原则的分支与边界方法是单目标整数编程中一种成熟的求解方法。在多目标优化中,分支与边界算法越来越受到关注。然而,目标数量的增加给分支与边界等隐式枚举法带来了额外的困难。由于在多目标情况下,约束和剪枝的作用要弱得多,因此许多分支必须(部分)搜索,而且可能无法直接剪枝。目标空间信息的自适应使用可以引导搜索向有希望的方向进行,从而在算法的早期阶段就确定帕累托前沿的良好近似值。在我们的数值测试中,我们评估了所提方法与多目标分支和约束的标准实施方法相比,对knapsack问题、广义分配问题和(无)容纳设施位置问题的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems Advances in nonlinear optimization and equilibrium problems – Special issue editorial The Marguerite Frank Award for the best EJCO paper 2023 A variable metric proximal stochastic gradient method: An application to classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1