HaRNaT - A dynamic hashtag recommendation system using news

Q1 Social Sciences Online Social Networks and Media Pub Date : 2024-11-23 DOI:10.1016/j.osnem.2024.100294
Divya Gupta, Shampa Chakraverty
{"title":"HaRNaT - A dynamic hashtag recommendation system using news","authors":"Divya Gupta,&nbsp;Shampa Chakraverty","doi":"10.1016/j.osnem.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><div>Microblogging platforms such as <em>X</em> and <em>Mastadon</em> have evolved into significant data sources, where the Hashtag Recommendation System (HRS) is being devised to automate the recommendation of hashtags for user queries. We propose a context-sensitive, Machine Learning based HRS named <em>HaRNaT</em>, that strategically leverages news articles to identify pertinent keywords and subjects related to a query. It interprets the fresh context of a query and tracks the evolving dynamics of hashtags to evaluate their relevance in the present context. In contrast to prior methods that primarily rely on microblog content for hashtag recommendation, <em>HaRNaT</em> mines contextually related microblogs and assesses the relevance of co-occurring hashtags with news information. To accomplish this, it evaluates hashtag features, including pertinence, popularity among users, and association with other hashtags. In performance evaluation of <em>HaRNaT</em> trained on these features demonstrates a macro-averaged precision of 84% with Naive Bayes and 80% with Logistic Regression. Compared to <em>Hashtagify</em>- a hashtag search engine, <em>HaRNaT</em> offers a dynamically evolving set of hashtags.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"45 ","pages":"Article 100294"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696424000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Microblogging platforms such as X and Mastadon have evolved into significant data sources, where the Hashtag Recommendation System (HRS) is being devised to automate the recommendation of hashtags for user queries. We propose a context-sensitive, Machine Learning based HRS named HaRNaT, that strategically leverages news articles to identify pertinent keywords and subjects related to a query. It interprets the fresh context of a query and tracks the evolving dynamics of hashtags to evaluate their relevance in the present context. In contrast to prior methods that primarily rely on microblog content for hashtag recommendation, HaRNaT mines contextually related microblogs and assesses the relevance of co-occurring hashtags with news information. To accomplish this, it evaluates hashtag features, including pertinence, popularity among users, and association with other hashtags. In performance evaluation of HaRNaT trained on these features demonstrates a macro-averaged precision of 84% with Naive Bayes and 80% with Logistic Regression. Compared to Hashtagify- a hashtag search engine, HaRNaT offers a dynamically evolving set of hashtags.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HaRNaT - 利用新闻的动态标签推荐系统
X 和 Mastadon 等微博平台已发展成为重要的数据源,其中的标签推荐系统(HRS)被设计用于为用户查询自动推荐标签。我们提出了一种基于机器学习的上下文敏感型 HRS,名为 HaRNaT,它能战略性地利用新闻文章来识别与查询相关的关键词和主题。它能解释查询的新上下文,并跟踪标签不断变化的动态,以评估其在当前上下文中的相关性。与之前主要依靠微博内容进行标签推荐的方法不同,HaRNaT 可挖掘与上下文相关的微博,并评估与新闻信息共同出现的标签的相关性。为此,它评估了标签的特征,包括相关性、在用户中的流行度以及与其他标签的关联性。根据这些特征对 HaRNaT 进行的性能评估表明,使用 Naive Bayes 算法的宏观平均精确度为 84%,使用 Logistic Regression 算法的宏观平均精确度为 80%。与 Hashtagify(一种标签搜索引擎)相比,HaRNaT 提供了一组动态演化的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
Influencer self-disclosure practices on Instagram: A multi-country longitudinal study DisTGranD: Granular event/sub-event classification for disaster response BD2TSumm: A Benchmark Dataset for Abstractive Disaster Tweet Summarization Why are you traveling? Inferring trip profiles from online reviews and domain-knowledge How political symbols spread in online social networks: Using agent-based models to replicate the complex contagion of the yellow ribbon in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1