Electrochemical performance of MnMoO4-decorated MWCNT nanocomposite plates for asymmetric capacitor applications

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Diamond and Related Materials Pub Date : 2024-11-15 DOI:10.1016/j.diamond.2024.111743
N. Jafarulla , Shanmugaiah Mathan Kumar
{"title":"Electrochemical performance of MnMoO4-decorated MWCNT nanocomposite plates for asymmetric capacitor applications","authors":"N. Jafarulla ,&nbsp;Shanmugaiah Mathan Kumar","doi":"10.1016/j.diamond.2024.111743","DOIUrl":null,"url":null,"abstract":"<div><div>To improve advanced energy storage systems, innovative and versatile electrode materials with exceptional electrochemical characteristics must be developed. In this study, we present a new and distinctive design for an electrode made of MWCNT nanowires decorated on plates like MnMoO<sub>4</sub>. The nanocomposite was fabricated using a hydrothermal method and developed for use in an asymmetric supercapacitor. Initially, the samples underwent thorough examination using spectroscopic techniques such as XRD and XPS, as well as microscopic investigation using FE-SEM. The sample provides an effective mesoporous structure, facilitates the flow of ions, enables fast electron transfer, and permits a higher concentration of MnMoO<sub>4</sub> and MWCNT active sites. The MnMoO<sub>4</sub>/MWCNT composite has a specific capacitance (C<sub>s</sub>) of 1800 F/g at 1 A g<sup>−1</sup>, demonstrating excellent durability in a three-electrode cell. The built asymmetric supercapacitors demonstrate a power density of 1062 W kg<sup>−1</sup> and an energy density of 42.48 Wh kg<sup>−1</sup>. Furthermore, the ASCs exhibit remarkable cycling stability, with about 93% capacity retention after undergoing 10,000 cycles. Therefore, the current work clearly shows its effective due to its excellent electrochemical properties, this material shows great potential to be used in storage systems for energy.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111743"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009567","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

To improve advanced energy storage systems, innovative and versatile electrode materials with exceptional electrochemical characteristics must be developed. In this study, we present a new and distinctive design for an electrode made of MWCNT nanowires decorated on plates like MnMoO4. The nanocomposite was fabricated using a hydrothermal method and developed for use in an asymmetric supercapacitor. Initially, the samples underwent thorough examination using spectroscopic techniques such as XRD and XPS, as well as microscopic investigation using FE-SEM. The sample provides an effective mesoporous structure, facilitates the flow of ions, enables fast electron transfer, and permits a higher concentration of MnMoO4 and MWCNT active sites. The MnMoO4/MWCNT composite has a specific capacitance (Cs) of 1800 F/g at 1 A g−1, demonstrating excellent durability in a three-electrode cell. The built asymmetric supercapacitors demonstrate a power density of 1062 W kg−1 and an energy density of 42.48 Wh kg−1. Furthermore, the ASCs exhibit remarkable cycling stability, with about 93% capacity retention after undergoing 10,000 cycles. Therefore, the current work clearly shows its effective due to its excellent electrochemical properties, this material shows great potential to be used in storage systems for energy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于不对称电容器应用的 MnMoO4 装饰 MWCNT 纳米复合板的电化学性能
为了改进先进的储能系统,必须开发出具有优异电化学特性的创新型多功能电极材料。在本研究中,我们提出了一种由装饰在 MnMoO4 等板材上的 MWCNT 纳米线制成的新型独特电极设计。该纳米复合材料采用水热法制造,并开发用于不对称超级电容器。首先,使用 XRD 和 XPS 等光谱技术对样品进行了全面检查,并使用 FE-SEM 进行了微观研究。样品提供了有效的介孔结构,促进了离子流动,实现了快速电子转移,并允许更高浓度的 MnMoO4 和 MWCNT 活性位点。MnMoO4/MWCNT 复合材料在 1 A g-1 条件下的比电容(Cs)为 1800 F/g,在三电极电池中表现出卓越的耐用性。制成的不对称超级电容器的功率密度为 1062 W kg-1,能量密度为 42.48 Wh kg-1。此外,ASCs 还表现出显著的循环稳定性,在经历 10,000 次循环后仍能保持约 93% 的容量。因此,目前的工作清楚地表明,由于其出色的电化学特性,这种材料在能源存储系统中的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
期刊最新文献
Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Rapid synthesis of nitrogen-doped carbon dots by microwave method for sensitive detection of co(II) in water environment Supercapacitor performance evaluation with changes of microstructure in carbon electrode from perylene diimide derivative Study on the performance and mechanism of photocatalytic hydrogen production by NiO/ZnO-graphene composite materials under low irradiation conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1