Keld R. Rasmussen , Jens Jacob Iversen , Jonatan Merrison
{"title":"The enhanced sensitivity of pitot tubes at low Reynolds number","authors":"Keld R. Rasmussen , Jens Jacob Iversen , Jonatan Merrison","doi":"10.1016/j.flowmeasinst.2024.102750","DOIUrl":null,"url":null,"abstract":"<div><div>Pitot tubes are commonly used for measuring flow velocity in air and other fluids. The aim of this experimental study was to link flow conditions and geometry to the differential pressure response (<em>Δp</em>) of pitot tubes. Based on outer diameter the pitot tube Reynolds number (Re<sub><em>D</em></sub>) ranges from less than 1 (molecular regime) to more than 100 (inertial regime). This large range in Reynolds number was achieved by varying the pitot tube outer diameter in the range 0.4–10 mm, the air density from 0.006 to 1.2 kg/m<sup>3</sup> and the air velocity from 0.25 to 30 m/s and by operating pitot tubes within a recirculating low pressure wind tunnel down to a pressure of 0.5 mbar as well as performing comparative observation in an open circuit wind tunnel. For the smallest Re<sub><em>D</em></sub>, viscous forces enhance <em>Δp</em> giving the smallest micro-pitot tubes superior functionality especially at low pressure. The small diameter of the micro-pitot tubes can also allow measurements close to a wall within the boundary layer. Measurements of <em>Δp</em> for Re<sub><em>D</em></sub> between approximately 0.08 and 1000 agree well with an analytical model derived by Muriel Barker in 1922 while they agree less well or even poorly with more recent models. At the lowest Re<sub><em>D</em></sub> the maximum enhancement of <em>Δp</em> was observed to be a factor of 65. The enhancement became undetectable for Re<sub><em>D</em></sub> larger than approximately 70. At the lowest air density and the smallest pitot tube inner diameter possible effects due to slip were observed.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"101 ","pages":"Article 102750"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624002309","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pitot tubes are commonly used for measuring flow velocity in air and other fluids. The aim of this experimental study was to link flow conditions and geometry to the differential pressure response (Δp) of pitot tubes. Based on outer diameter the pitot tube Reynolds number (ReD) ranges from less than 1 (molecular regime) to more than 100 (inertial regime). This large range in Reynolds number was achieved by varying the pitot tube outer diameter in the range 0.4–10 mm, the air density from 0.006 to 1.2 kg/m3 and the air velocity from 0.25 to 30 m/s and by operating pitot tubes within a recirculating low pressure wind tunnel down to a pressure of 0.5 mbar as well as performing comparative observation in an open circuit wind tunnel. For the smallest ReD, viscous forces enhance Δp giving the smallest micro-pitot tubes superior functionality especially at low pressure. The small diameter of the micro-pitot tubes can also allow measurements close to a wall within the boundary layer. Measurements of Δp for ReD between approximately 0.08 and 1000 agree well with an analytical model derived by Muriel Barker in 1922 while they agree less well or even poorly with more recent models. At the lowest ReD the maximum enhancement of Δp was observed to be a factor of 65. The enhancement became undetectable for ReD larger than approximately 70. At the lowest air density and the smallest pitot tube inner diameter possible effects due to slip were observed.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.