Fengguo Liu , Zhiyuan Wan , Shihua Cao , Dongfang Zhao , Guangqian Liu , Keke Zhang
{"title":"Fluid-structure interaction analysis on flow field and vibration characteristics of gas proportional valve","authors":"Fengguo Liu , Zhiyuan Wan , Shihua Cao , Dongfang Zhao , Guangqian Liu , Keke Zhang","doi":"10.1016/j.flowmeasinst.2024.102743","DOIUrl":null,"url":null,"abstract":"<div><div>Gas proportional valve (GPV) is used as the gas regulator for fully premixed low nitrogen condensing boiler, with the pressure regulation and flow output capacity determined by the condition of the valve core. To investigate the reliability of GPV valve core in engineering applications, this paper establishes three-dimensional models of the flow and solid fields, employing a coupled calculation method known as the two-way fluid-structure interaction method to analyze the characteristics of the flow field and the stability of the valve core. The results indicate that with the valve core opening, the vortex structures gradually form on both sides of the upper diaphragm, and the vibration strength of the valve core gradually increases with the formations of the vortices. The valve core vibrates the most strongly in the outflow direction, and the upper diaphragm oscillates between −0.05 mm and 0.03 mm. When the valve core is first opened to its maximum height, there will be a 0.2 mm impact rebound, and then gradually stabilize at the maximum opening position of 8 mm. Maximum stress always occurs at the stem to diaphragms connections, especially in the initial opening stage, where the stress reaching 5.17 MPa but remaining within the allowable limit of 30 MPa. This study also compares the flow field excitation with the valve core's natural frequency, identifying potential valve core resonance. This work provides valuable guidance for the flow field characteristics and valve core safety prediction of pneumatic GPVs.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"101 ","pages":"Article 102743"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624002231","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gas proportional valve (GPV) is used as the gas regulator for fully premixed low nitrogen condensing boiler, with the pressure regulation and flow output capacity determined by the condition of the valve core. To investigate the reliability of GPV valve core in engineering applications, this paper establishes three-dimensional models of the flow and solid fields, employing a coupled calculation method known as the two-way fluid-structure interaction method to analyze the characteristics of the flow field and the stability of the valve core. The results indicate that with the valve core opening, the vortex structures gradually form on both sides of the upper diaphragm, and the vibration strength of the valve core gradually increases with the formations of the vortices. The valve core vibrates the most strongly in the outflow direction, and the upper diaphragm oscillates between −0.05 mm and 0.03 mm. When the valve core is first opened to its maximum height, there will be a 0.2 mm impact rebound, and then gradually stabilize at the maximum opening position of 8 mm. Maximum stress always occurs at the stem to diaphragms connections, especially in the initial opening stage, where the stress reaching 5.17 MPa but remaining within the allowable limit of 30 MPa. This study also compares the flow field excitation with the valve core's natural frequency, identifying potential valve core resonance. This work provides valuable guidance for the flow field characteristics and valve core safety prediction of pneumatic GPVs.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.