Xue Liu , Heng Yang , Shanshan Li , Zhenyu Liu , Xiaohui Lian
{"title":"Enhanced RACH optimization in IoT networks: A DQN approach for balancing H2H and M2M communications","authors":"Xue Liu , Heng Yang , Shanshan Li , Zhenyu Liu , Xiaohui Lian","doi":"10.1016/j.iot.2024.101433","DOIUrl":null,"url":null,"abstract":"<div><div>A novel adaptive Deep Q-Network (DQN)-based algorithm is designed for the dynamic management of the Random Access Channel (RACH) in LTE networks, facilitating the coexistence of Human-to-Human (H2H) and Machine-to-Machine (M2M) communications. This algorithm employs the integration of user priority and block rate-based dynamic adjustment policies within the DQN framework, significantly enhancing service quality across cellular communications. By categorizing devices into three priority tiers based on their Quality of Service (QoS) requirements, the scheme enables dynamic allocation of RACH resources, thus effectively reducing collisions and enhancing network efficiency. Additionally, the implementation of a dual-criteria convergence check within the model ensures the algorithm’s robustness and reliability, offering a significant advancement in managing the intricate dynamics of M2M and H2H communications. This approach not only exhibits effectiveness in access success rates, reductions in access delay, and increased preamble utilization but also underscores the potential for further refinements in learning efficiency and overall performance through dynamic parameter adjustments. This innovative study offers valuable insights into optimizing RACH resources and sets a solid foundation for advancing intelligent network management in increasingly complex communication landscapes.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101433"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003743","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel adaptive Deep Q-Network (DQN)-based algorithm is designed for the dynamic management of the Random Access Channel (RACH) in LTE networks, facilitating the coexistence of Human-to-Human (H2H) and Machine-to-Machine (M2M) communications. This algorithm employs the integration of user priority and block rate-based dynamic adjustment policies within the DQN framework, significantly enhancing service quality across cellular communications. By categorizing devices into three priority tiers based on their Quality of Service (QoS) requirements, the scheme enables dynamic allocation of RACH resources, thus effectively reducing collisions and enhancing network efficiency. Additionally, the implementation of a dual-criteria convergence check within the model ensures the algorithm’s robustness and reliability, offering a significant advancement in managing the intricate dynamics of M2M and H2H communications. This approach not only exhibits effectiveness in access success rates, reductions in access delay, and increased preamble utilization but also underscores the potential for further refinements in learning efficiency and overall performance through dynamic parameter adjustments. This innovative study offers valuable insights into optimizing RACH resources and sets a solid foundation for advancing intelligent network management in increasingly complex communication landscapes.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.