Min Zhang , Haiyu Sun , Xiao Zhang , Kun Lian , Ping Zong
{"title":"A cotton-derived carbon coating by thermolysis method for enhanced mechanical and bio-compatibility of NiTi alloy","authors":"Min Zhang , Haiyu Sun , Xiao Zhang , Kun Lian , Ping Zong","doi":"10.1016/j.diamond.2024.111744","DOIUrl":null,"url":null,"abstract":"<div><div>To elevate the performance of NiTi alloy in medical devices, carbon coating derived from natural cotton has been successfully deposited onto the alloy surface using a one-step thermolysis method. Natural cotton soaked in copper sulfate was utilized as carbon raw material, and the deposition process was carried out at low vacuum and temperature requirements. The mechanical and bio-compatibility of the coating performance of resulted carbon layer has been studied comprehensively. The uniformity and mechanical properties of the carbon film prepared at 390 °C, with a holding time of 1–2 h, indicate that it should retain the alloy's excellent mechanical properties and superelasticity. Furthermore, the carbon coating improves the corrosion resistance compared to the raw alloy material. Observations of the proliferation and morphology of adhered human umbilical vein endothelial cells confirm the non-toxic effect of the carbon film. Additionally, the application of the carbon film significantly reduces the contact angle and enhances the adsorption of albumin in blood, suggesting that employing carbon films as bio-active layers is a viable approach to enhance the performance of NiTi-based blood implants and components.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111744"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009579","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
To elevate the performance of NiTi alloy in medical devices, carbon coating derived from natural cotton has been successfully deposited onto the alloy surface using a one-step thermolysis method. Natural cotton soaked in copper sulfate was utilized as carbon raw material, and the deposition process was carried out at low vacuum and temperature requirements. The mechanical and bio-compatibility of the coating performance of resulted carbon layer has been studied comprehensively. The uniformity and mechanical properties of the carbon film prepared at 390 °C, with a holding time of 1–2 h, indicate that it should retain the alloy's excellent mechanical properties and superelasticity. Furthermore, the carbon coating improves the corrosion resistance compared to the raw alloy material. Observations of the proliferation and morphology of adhered human umbilical vein endothelial cells confirm the non-toxic effect of the carbon film. Additionally, the application of the carbon film significantly reduces the contact angle and enhances the adsorption of albumin in blood, suggesting that employing carbon films as bio-active layers is a viable approach to enhance the performance of NiTi-based blood implants and components.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.