Optoacoustic lenses for lateral sub-optical resolution elasticity imaging

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Photoacoustics Pub Date : 2024-11-16 DOI:10.1016/j.pacs.2024.100663
Mengting Yao, Rafael Fuentes-Domínguez, Salvatore La Cavera III, Fernando Pérez-Cota, Richard J. Smith, Matt Clark
{"title":"Optoacoustic lenses for lateral sub-optical resolution elasticity imaging","authors":"Mengting Yao,&nbsp;Rafael Fuentes-Domínguez,&nbsp;Salvatore La Cavera III,&nbsp;Fernando Pérez-Cota,&nbsp;Richard J. Smith,&nbsp;Matt Clark","doi":"10.1016/j.pacs.2024.100663","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time. Agreement of the experiment with a numerical model suggests that we can generate a focused acoustic beam down to <span><math><mo>∼</mo></math></span>250 nm. A clear focusing effect is observed experimentally as a modulation of the envelope of the time-resolved Brillouin scattering (TRBS) signal. These findings are a crucial step toward their application in high-resolution acoustic microscopy. This work experimentally demonstrates a method to narrow the lateral size of picosecond laser-generated phonon fields in an aqueous environment, making it well-suited for 3D imaging applications in biological systems using TRBS.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"41 ","pages":"Article 100663"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000806","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time. Agreement of the experiment with a numerical model suggests that we can generate a focused acoustic beam down to 250 nm. A clear focusing effect is observed experimentally as a modulation of the envelope of the time-resolved Brillouin scattering (TRBS) signal. These findings are a crucial step toward their application in high-resolution acoustic microscopy. This work experimentally demonstrates a method to narrow the lateral size of picosecond laser-generated phonon fields in an aqueous environment, making it well-suited for 3D imaging applications in biological systems using TRBS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于横向亚光学分辨率弹性成像的光声透镜
在本文中,我们首次展示了利用皮秒超声波和布里渊光散射对在水中传播的千兆赫相干声子脉冲进行聚焦。我们通过使用不同焦距的平面菲涅尔区板和凹透镜来实现这一目的。照亮光声透镜的泵浦光产生聚焦声场,布里渊散射探针光可对声场进行长时间连续监测。实验结果与数值模型一致,表明我们可以产生低至 ∼250 nm 的聚焦声束。实验观察到了明显的聚焦效应,即时间分辨布里渊散射(TRBS)信号包络线的调制。这些发现是将其应用于高分辨率声学显微镜的关键一步。这项工作通过实验证明了一种在水环境中缩小皮秒激光产生的声子场横向尺寸的方法,使其非常适合利用 TRBS 在生物系统中进行三维成像应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
期刊最新文献
Optoacoustic lenses for lateral sub-optical resolution elasticity imaging Quantitative pharmacodynamics functional evaluation of Chinese medicine Qizhu formula in mice with dynamic near-infrared photoacoustic imaging Cross-sectional imaging of speed-of-sound distribution using photoacoustic reversal beacons Photoacoustic spectroscopy of layered crystals: An enhancement of the photoacoustic signal and its analysis from the perspective of heat generation Ultrasound-assisted aberration correction of transcranial photoacoustic imaging based on angular spectrum theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1