Mengting Yao, Rafael Fuentes-Domínguez, Salvatore La Cavera III, Fernando Pérez-Cota, Richard J. Smith, Matt Clark
{"title":"Optoacoustic lenses for lateral sub-optical resolution elasticity imaging","authors":"Mengting Yao, Rafael Fuentes-Domínguez, Salvatore La Cavera III, Fernando Pérez-Cota, Richard J. Smith, Matt Clark","doi":"10.1016/j.pacs.2024.100663","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time. Agreement of the experiment with a numerical model suggests that we can generate a focused acoustic beam down to <span><math><mo>∼</mo></math></span>250 nm. A clear focusing effect is observed experimentally as a modulation of the envelope of the time-resolved Brillouin scattering (TRBS) signal. These findings are a crucial step toward their application in high-resolution acoustic microscopy. This work experimentally demonstrates a method to narrow the lateral size of picosecond laser-generated phonon fields in an aqueous environment, making it well-suited for 3D imaging applications in biological systems using TRBS.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"41 ","pages":"Article 100663"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000806","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time. Agreement of the experiment with a numerical model suggests that we can generate a focused acoustic beam down to 250 nm. A clear focusing effect is observed experimentally as a modulation of the envelope of the time-resolved Brillouin scattering (TRBS) signal. These findings are a crucial step toward their application in high-resolution acoustic microscopy. This work experimentally demonstrates a method to narrow the lateral size of picosecond laser-generated phonon fields in an aqueous environment, making it well-suited for 3D imaging applications in biological systems using TRBS.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.