Movement control based on model predictive control using Kalman filter for known and unknown noise covariance matrices

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of The Franklin Institute-engineering and Applied Mathematics Pub Date : 2024-11-21 DOI:10.1016/j.jfranklin.2024.107411
Jiahui Zhang, Xinmin Song, Lei Tan
{"title":"Movement control based on model predictive control using Kalman filter for known and unknown noise covariance matrices","authors":"Jiahui Zhang,&nbsp;Xinmin Song,&nbsp;Lei Tan","doi":"10.1016/j.jfranklin.2024.107411","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes two motion control algorithms, one based on model predictive control (MPC) and traditional Kalman filter control algorithm, and the other based on MPC and adaptive Kalman filter control algorithm. Both control algorithms consider the influence of noise and are respectively used to solve the problem where the noise covariance matrix is completely known or completely unknown. Under the influence of noise, it is difficult for general MPC to achieve ideal control effects. In contrast, the proposed MPC algorithms filtered by traditional Kalman filters and adaptive Kalman filters have strong robustness and anti-interference ability. Finally, the control algorithms proposed in this paper are simulated in the height control of unmanned aerial vehicles through mathematical modeling, and the feasibility of the control algorithms in zero steady state and non-zero steady state is verified.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 1","pages":"Article 107411"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224008329","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes two motion control algorithms, one based on model predictive control (MPC) and traditional Kalman filter control algorithm, and the other based on MPC and adaptive Kalman filter control algorithm. Both control algorithms consider the influence of noise and are respectively used to solve the problem where the noise covariance matrix is completely known or completely unknown. Under the influence of noise, it is difficult for general MPC to achieve ideal control effects. In contrast, the proposed MPC algorithms filtered by traditional Kalman filters and adaptive Kalman filters have strong robustness and anti-interference ability. Finally, the control algorithms proposed in this paper are simulated in the height control of unmanned aerial vehicles through mathematical modeling, and the feasibility of the control algorithms in zero steady state and non-zero steady state is verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卡尔曼滤波器对已知和未知噪声协方差矩阵进行基于模型预测控制的运动控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
期刊最新文献
Prescribed-time event-triggered control of multi-agent systems based on continuous scaling function Movement control based on model predictive control using Kalman filter for known and unknown noise covariance matrices Linear convergence for distributed stochastic optimization with coupled inequality constraints Adaptive fixed-time fuzzy control for delayed recycling continuous stirred tank reactor with asymmetric time-varying full-state constraints Linear and nonlinear filters based on statistical similarity measure for sensor network systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1