Iman Hussein Hasan , Raed Muslim Mhaibes , Abdul Amir H. Kadhum , Hussein Ali Al-Bahrani , Ali Thoulfikar A. Imeer , Nihad A.M Al-Rashedi , Guang Shu
{"title":"Recent advances on Pd schiff base catalysts in suzuki-miyaura cross-coupling reaction: A review","authors":"Iman Hussein Hasan , Raed Muslim Mhaibes , Abdul Amir H. Kadhum , Hussein Ali Al-Bahrani , Ali Thoulfikar A. Imeer , Nihad A.M Al-Rashedi , Guang Shu","doi":"10.1016/j.jorganchem.2024.123444","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon-carbon cross-coupling organic transformations are crucial in organic chemistry, but achieving them without a catalyst is challenging. Various catalysts based on complex have been developed to facilitate these reactions. Firstly, ligands based on phosphine were used, but their sensitive nature and toxic led researchers to turn to ligands based on Schiff base. These ligands are stable, simple to synthesize, and produce a variety of transition metal complexes. Ligands based on Schiff base are typically synthesized from the condensation reaction between carbonyl compounds and an amino group, and their complexes along with transition metal are widely used in different carbon–carbon cross-coupling organic transformations. In particular, palladium complexes, are well-known catalytic systems in carbon-carbon cross-coupling organic transformations such as the Suzuki-Miyaura cross-coupling organic transformations. This review focuses on the application of Pd Schiff base ligands in Suzuki-Miyaura reaction.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1024 ","pages":"Article 123444"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X2400439X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-carbon cross-coupling organic transformations are crucial in organic chemistry, but achieving them without a catalyst is challenging. Various catalysts based on complex have been developed to facilitate these reactions. Firstly, ligands based on phosphine were used, but their sensitive nature and toxic led researchers to turn to ligands based on Schiff base. These ligands are stable, simple to synthesize, and produce a variety of transition metal complexes. Ligands based on Schiff base are typically synthesized from the condensation reaction between carbonyl compounds and an amino group, and their complexes along with transition metal are widely used in different carbon–carbon cross-coupling organic transformations. In particular, palladium complexes, are well-known catalytic systems in carbon-carbon cross-coupling organic transformations such as the Suzuki-Miyaura cross-coupling organic transformations. This review focuses on the application of Pd Schiff base ligands in Suzuki-Miyaura reaction.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.