Sicheng Yao , Yan Zhang , Xinying Liu , Xinyu Dong, Zhiming Zhang, Xingqiang Lü, Guorui Fu
{"title":"Deep-red or near-infrared-emitting Iridium (III) complex as efficient phosphorescent dye for live cell imaging through staining in cytoplasm","authors":"Sicheng Yao , Yan Zhang , Xinying Liu , Xinyu Dong, Zhiming Zhang, Xingqiang Lü, Guorui Fu","doi":"10.1016/j.jorganchem.2024.123443","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the bioimaging highly realized from Ir(III)-complexes with visible-light, the staining on organelles by NIR-emissive (NIR = near infrared) Ir(III)-complex species especially in cytoplasm was rarely reported. In this work, two new cationic iridium (III) complexes ({[Ir(C^N)<sub>2</sub>(N^N)]<sup>+</sup> ·(PF<sub>6</sub>)<sup>−</sup>}; C^<em>N</em> = 2,3-diphenylquinoxaline (<strong>dpqx</strong>)<sup>−</sup> or 1-(benzo[b]-thiophen-2-yl)-isoquinoline (<strong>iqbt</strong>)<sup>−</sup>; N^<em>N</em> = 2-(pyridin-2-yl)-5-(4-vinylphenyl)pyridine (4vp-2,2′-bpy)), namely {[Ir(dpqx)<sub>2</sub>(4vp-2,2′-bpy)]<sup>+</sup> ·(PF<sub>6</sub>)<sup>−</sup>} (<strong>1</strong>) and {[Ir(iqbt)<sub>2</sub>(4vp-2,2′-bpy)]<sup>+</sup> ·(PF<sub>6</sub>)<sup>−</sup>} (<strong>2</strong>) with efficient deep-red (<span><math><msubsup><mi>λ</mi><mrow><mtext>em</mtext></mrow><mtext>Max</mtext></msubsup></math></span> = 630 nm, Φ<sub>PL</sub> = 0.19) and NIR-emissions (<span><math><msubsup><mi>λ</mi><mrow><mtext>em</mtext></mrow><mtext>Max</mtext></msubsup></math></span> = 683 nm, Φ<sub>PL</sub> = 0.16), are obtained, respectively. Moreover, beneficial from the excellent biocompatibility and low cytotoxicity, each of the two cationic iridium (III) complexes <strong>1</strong> and <strong>2</strong>, enables to exclusively stain in the cytoplasm of live cells. This research might provide two ideal candidates in the design of high-efficiency deep-red or NIR emitting cationic iridium (III) complexes for specific bioimaging agents.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1024 ","pages":"Article 123443"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24004388","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the bioimaging highly realized from Ir(III)-complexes with visible-light, the staining on organelles by NIR-emissive (NIR = near infrared) Ir(III)-complex species especially in cytoplasm was rarely reported. In this work, two new cationic iridium (III) complexes ({[Ir(C^N)2(N^N)]+ ·(PF6)−}; C^N = 2,3-diphenylquinoxaline (dpqx)− or 1-(benzo[b]-thiophen-2-yl)-isoquinoline (iqbt)−; N^N = 2-(pyridin-2-yl)-5-(4-vinylphenyl)pyridine (4vp-2,2′-bpy)), namely {[Ir(dpqx)2(4vp-2,2′-bpy)]+ ·(PF6)−} (1) and {[Ir(iqbt)2(4vp-2,2′-bpy)]+ ·(PF6)−} (2) with efficient deep-red ( = 630 nm, ΦPL = 0.19) and NIR-emissions ( = 683 nm, ΦPL = 0.16), are obtained, respectively. Moreover, beneficial from the excellent biocompatibility and low cytotoxicity, each of the two cationic iridium (III) complexes 1 and 2, enables to exclusively stain in the cytoplasm of live cells. This research might provide two ideal candidates in the design of high-efficiency deep-red or NIR emitting cationic iridium (III) complexes for specific bioimaging agents.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.