Donghyeok Lee , Annemiek Maaskant , Huy Ngo , Roy C. Montijn , Jaco Bakker , Jan A.M. Langermans , Evgeni Levin
{"title":"A rapid, affordable, and reliable method for profiling microbiome biomarkers from fecal images","authors":"Donghyeok Lee , Annemiek Maaskant , Huy Ngo , Roy C. Montijn , Jaco Bakker , Jan A.M. Langermans , Evgeni Levin","doi":"10.1016/j.isci.2024.111310","DOIUrl":null,"url":null,"abstract":"<div><div>Human and veterinary healthcare professionals are interested in utilizing the gut-microbiome as a target to diagnose, treat, and prevent (gastrointestinal) diseases. However, the current microbiome analysis techniques are expensive and time-consuming, and data interpretation requires the expertise of specialists. Therefore, we explored the development and application of artificial intelligence technology for rapid, affordable, and reliable microbiome profiling in rhesus macaques (<em>Macaca mulatta</em>). Tailor-made learning algorithms were created by integrating digital images of fecal samples with corresponding whole-genome sequenced microbial profiles. These algorithms were trained to identify alpha-diversity (Shannon index), key microbial markers, and fecal consistency from the digital images of fecal smears. A binary classification strategy was applied to distinguish between samples with high and low diversity and presence or absence of selected bacterial genera. Our results revealed a successful proof of concept for “high and low” prediction of diversity, fecal consistency, and “present or absent” for selected bacterial genera.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111310"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224025355","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human and veterinary healthcare professionals are interested in utilizing the gut-microbiome as a target to diagnose, treat, and prevent (gastrointestinal) diseases. However, the current microbiome analysis techniques are expensive and time-consuming, and data interpretation requires the expertise of specialists. Therefore, we explored the development and application of artificial intelligence technology for rapid, affordable, and reliable microbiome profiling in rhesus macaques (Macaca mulatta). Tailor-made learning algorithms were created by integrating digital images of fecal samples with corresponding whole-genome sequenced microbial profiles. These algorithms were trained to identify alpha-diversity (Shannon index), key microbial markers, and fecal consistency from the digital images of fecal smears. A binary classification strategy was applied to distinguish between samples with high and low diversity and presence or absence of selected bacterial genera. Our results revealed a successful proof of concept for “high and low” prediction of diversity, fecal consistency, and “present or absent” for selected bacterial genera.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.