{"title":"Feasibility of successive hydrogen and methane production: Effects of temperature and organic loads on energy potential and microbial dynamics","authors":"Kauanna Uyara Devens , Alexandre Rodrigues Ribeiro , Franciele Pereira Camargo , Isabel Kimiko Sakamoto , Maria Bernadete Amâncio Varesche , Edson Luiz Silva","doi":"10.1016/j.ibiod.2024.105955","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to assess the co-digestion of Cassava Wastewater (CW) and glycerol in a two-stage process using fluidized bed reactors (AFBR), verifying the effect of organic loading rate (OLR) and temperature (mesophilic [SMR] and thermophilic [STR]) in sequential reactors on CH<sub>4</sub> production. The OLR ranged from 1.2 to 15 g COD.L<sup>−1</sup>.d<sup>−1</sup> and the hydraulic retention time (HRT) was set at 20 h. The mesophilic sequential reactor (MSR) (average temperature of 30 °C) showed greater tolerance to high OLR and its best MPR was 101.12 mL of CH<sub>4</sub>.d<sup>−1</sup>.L<sup>−1</sup> h<sup>−1</sup>, obtained at a OLR of 15 g COD.L<sup>−1</sup>.d<sup>−1</sup>). The maximum yield was 341.10 mL of CH<sub>4</sub>.g<sup>−1</sup>COD<sub>cons</sub>, found at the OLR of 1.2 g COD.L<sup>−1</sup>.d<sup>−1</sup>. The sequential thermophilic reactor (STR) showed the maximum yield and MPR of 333.03 mL of CH<sub>4</sub>.g<sup>−1</sup>COD<sub>cons</sub> (1.2 g COD.L<sup>−1</sup>.d<sup>−1</sup>) and 58.84 mL of CH<sub>4</sub>.d<sup>− 1</sup>.L<sup>−1</sup> h<sup>−1</sup> (12 g COD.L<sup>−1</sup>.d<sup>−1</sup>), respectively. Through the massive sequencing analysis of the 16S rRNA gene, it was possible to observe a greater diversity of microorganisms in the TSR than in the MSR. A predominance of acetoclastic microorganisms was observed, with the genera <em>Methanobacterium</em>, <em>Methanosarcina</em> and <em>Methanobrevibacter</em> being the most abundant in both reactors. The two-stage system composed of mesophilic acidogenic reactor + MSR was more suitable for the co-digestion of CW and glycerol than the acidogenic reactor + TSR. These results support the notion of standard operating conditions at the industrial plant, where the cassava processing process is carried out at room temperature (25–30 °C).</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105955"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524002269","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to assess the co-digestion of Cassava Wastewater (CW) and glycerol in a two-stage process using fluidized bed reactors (AFBR), verifying the effect of organic loading rate (OLR) and temperature (mesophilic [SMR] and thermophilic [STR]) in sequential reactors on CH4 production. The OLR ranged from 1.2 to 15 g COD.L−1.d−1 and the hydraulic retention time (HRT) was set at 20 h. The mesophilic sequential reactor (MSR) (average temperature of 30 °C) showed greater tolerance to high OLR and its best MPR was 101.12 mL of CH4.d−1.L−1 h−1, obtained at a OLR of 15 g COD.L−1.d−1). The maximum yield was 341.10 mL of CH4.g−1CODcons, found at the OLR of 1.2 g COD.L−1.d−1. The sequential thermophilic reactor (STR) showed the maximum yield and MPR of 333.03 mL of CH4.g−1CODcons (1.2 g COD.L−1.d−1) and 58.84 mL of CH4.d− 1.L−1 h−1 (12 g COD.L−1.d−1), respectively. Through the massive sequencing analysis of the 16S rRNA gene, it was possible to observe a greater diversity of microorganisms in the TSR than in the MSR. A predominance of acetoclastic microorganisms was observed, with the genera Methanobacterium, Methanosarcina and Methanobrevibacter being the most abundant in both reactors. The two-stage system composed of mesophilic acidogenic reactor + MSR was more suitable for the co-digestion of CW and glycerol than the acidogenic reactor + TSR. These results support the notion of standard operating conditions at the industrial plant, where the cassava processing process is carried out at room temperature (25–30 °C).
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.