Jordan R. Yaron , Shubham Pallod , Nicole Grigaitis-Esman , Vanshika Singh , Samantha Rhodes , Dirghau Manishbhai Patel , Deepanjan Ghosh , Kaushal Rege
{"title":"Histamine receptor agonism differentially induces immune and reparative healing responses in biomaterial-facilitated tissue repair","authors":"Jordan R. Yaron , Shubham Pallod , Nicole Grigaitis-Esman , Vanshika Singh , Samantha Rhodes , Dirghau Manishbhai Patel , Deepanjan Ghosh , Kaushal Rege","doi":"10.1016/j.biomaterials.2024.122967","DOIUrl":null,"url":null,"abstract":"<div><div>Tissue repair is a highly regulated process involving immune, stromal, vascular, and parenchymal cell responses. Mediators of cellular responses at different phases of the healing process stimulate transitions through the continuum of repair. Histamine is an early mediator of healing, which, in skin, is released by resident cells (e.g., mast cells) after cutaneous injury, and acts to stimulate diverse responses in multiple cell populations. Histamine signaling is regulated by four distinct cell surface G-protein coupled receptors (HRH1-4 in humans, Hrh1-4 in mice) which initiate different downstream signaling cascades upon activation, but the specific effect of each receptor on tissue repair is poorly understood. Here, we systematically investigated the effect of selective histamine receptor agonism in laser-activated sealing and tissue repair of incisional skin wounds in immunocompetent mice. Although all four histamine receptors exhibited wound responsiveness in the epidermis, we find that activation of Hrh1, Hrh2, and Hrh4 stimulate a pro-healing immune response characterized by increased pro-resolution macrophages, reduced pro-inflammatory macrophages, and suppressed neutrophil responses. Further, activation of Hrh1 and Hrh4 stimulate angiogenesis after injury. Lastly, although Hrh1 activation resulted in enhanced epidermal epithelial-to-mesenchymal transition (EMT) <em>in vivo</em> and epithelialization <em>in vitro</em>, activation of Hrh2 suppressed both epidermal EMT and epithelialization. Activation of Hrh3, primarily found on neuronal cells, had no effect on any measure in our study. Selective histamine receptor agonism, specifically of histamine receptors Hrh-1 and 4, is a potential reparative approach to promote the efficacy of biomaterial-mediated repair of tissues, including skin.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122967"},"PeriodicalIF":12.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224005027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue repair is a highly regulated process involving immune, stromal, vascular, and parenchymal cell responses. Mediators of cellular responses at different phases of the healing process stimulate transitions through the continuum of repair. Histamine is an early mediator of healing, which, in skin, is released by resident cells (e.g., mast cells) after cutaneous injury, and acts to stimulate diverse responses in multiple cell populations. Histamine signaling is regulated by four distinct cell surface G-protein coupled receptors (HRH1-4 in humans, Hrh1-4 in mice) which initiate different downstream signaling cascades upon activation, but the specific effect of each receptor on tissue repair is poorly understood. Here, we systematically investigated the effect of selective histamine receptor agonism in laser-activated sealing and tissue repair of incisional skin wounds in immunocompetent mice. Although all four histamine receptors exhibited wound responsiveness in the epidermis, we find that activation of Hrh1, Hrh2, and Hrh4 stimulate a pro-healing immune response characterized by increased pro-resolution macrophages, reduced pro-inflammatory macrophages, and suppressed neutrophil responses. Further, activation of Hrh1 and Hrh4 stimulate angiogenesis after injury. Lastly, although Hrh1 activation resulted in enhanced epidermal epithelial-to-mesenchymal transition (EMT) in vivo and epithelialization in vitro, activation of Hrh2 suppressed both epidermal EMT and epithelialization. Activation of Hrh3, primarily found on neuronal cells, had no effect on any measure in our study. Selective histamine receptor agonism, specifically of histamine receptors Hrh-1 and 4, is a potential reparative approach to promote the efficacy of biomaterial-mediated repair of tissues, including skin.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.