Optimized hybrid XGBoost-CatBoost model for enhanced prediction of concrete strength and reliability analysis using Monte Carlo simulations

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-11-22 DOI:10.1016/j.asoc.2024.112490
Tuan Nguyen-Sy
{"title":"Optimized hybrid XGBoost-CatBoost model for enhanced prediction of concrete strength and reliability analysis using Monte Carlo simulations","authors":"Tuan Nguyen-Sy","doi":"10.1016/j.asoc.2024.112490","DOIUrl":null,"url":null,"abstract":"<div><div>Building on our previous work demonstrating the exceptional potential of the Extreme Gradient Boosting model (XGBoost) for predicting the uniaxial compressive strength of concrete, this study introduces several significant advancements. First, we develop a novel optimized hybrid model that synergistically combines XGBoost, CatBoost (one of the most advanced tree-boosting models), and the Optuna algorithm to achieve unprecedented prediction accuracy. Second, we apply this hybrid model in Monte Carlo simulations to conduct a pioneering reliability analysis of concrete strength, capturing the effects of input uncertainty. Third, we propose an innovative technique for estimating tree leaf values, which fundamentally improves prediction accuracy. Our optimized hybrid model delivers outstanding performance, as evidenced by a five-fold cross-validation showing a coefficient of determination (R²) of 0.953, a root mean squared error (RMSE) of 3.603 MPa, and a mean absolute error (MAE) of 2.261 MPa—metrics that surpass the best results reported in the existing literature. Additionally, our Monte Carlo simulations reveal a substantial error range of 10–20 MPa for a ±5 % variation in input features, underscoring the critical impact of input uncertainty on prediction reliability. Furthermore, our new leaf value estimation technique significantly outperforms traditional averaging methods, offering a transformative improvement in model accuracy. These findings are crucial for broadening the scope of machine learning applications in civil engineering and other engineering disciplines.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112490"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462401264X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Building on our previous work demonstrating the exceptional potential of the Extreme Gradient Boosting model (XGBoost) for predicting the uniaxial compressive strength of concrete, this study introduces several significant advancements. First, we develop a novel optimized hybrid model that synergistically combines XGBoost, CatBoost (one of the most advanced tree-boosting models), and the Optuna algorithm to achieve unprecedented prediction accuracy. Second, we apply this hybrid model in Monte Carlo simulations to conduct a pioneering reliability analysis of concrete strength, capturing the effects of input uncertainty. Third, we propose an innovative technique for estimating tree leaf values, which fundamentally improves prediction accuracy. Our optimized hybrid model delivers outstanding performance, as evidenced by a five-fold cross-validation showing a coefficient of determination (R²) of 0.953, a root mean squared error (RMSE) of 3.603 MPa, and a mean absolute error (MAE) of 2.261 MPa—metrics that surpass the best results reported in the existing literature. Additionally, our Monte Carlo simulations reveal a substantial error range of 10–20 MPa for a ±5 % variation in input features, underscoring the critical impact of input uncertainty on prediction reliability. Furthermore, our new leaf value estimation technique significantly outperforms traditional averaging methods, offering a transformative improvement in model accuracy. These findings are crucial for broadening the scope of machine learning applications in civil engineering and other engineering disciplines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蒙特卡洛模拟优化 XGBoost-CatBoost 混合模型,加强混凝土强度预测和可靠性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
Optimized hybrid XGBoost-CatBoost model for enhanced prediction of concrete strength and reliability analysis using Monte Carlo simulations A Z-number-based three-way decision method with classification-based state determination for the evaluation of new energy enterprises Deep supervision network with contrastive learning for zero-shot sketch-based image retrieval Adaptive deep learning models for efficient multivariate anomaly detection in IoT infrastructures A robust rank aggregation method for malicious disturbance based on objective credit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1