Wenhua Zhang , Sen Yang , Meiwei Luo , Chuan He , Yuchen Li , Jun Zhang , Xiyue Wang , Fang Wang
{"title":"Keep it accurate and robust: An enhanced nuclei analysis framework","authors":"Wenhua Zhang , Sen Yang , Meiwei Luo , Chuan He , Yuchen Li , Jun Zhang , Xiyue Wang , Fang Wang","doi":"10.1016/j.csbj.2024.10.046","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation and classification of nuclei in histology images is critical but challenging due to nuclei heterogeneity, staining variations, and tissue complexity. Existing methods often struggle with limited dataset variability, with patches extracted from similar whole slide images (WSI), making models prone to falling into local optima. Here we propose a new framework to address this limitation and enable robust nuclear analysis. Our method leverages dual-level ensemble modeling to overcome issues stemming from limited dataset variation. Intra-ensembling applies diverse transformations to individual samples, while inter-ensembling combines networks of different scales. We also introduce enhancements to the HoVer-Net architecture, including updated encoders, nested dense decoding and model regularization strategy. We achieve state-of-the-art results on public benchmarks, including 1st place for nuclear composition prediction and 3rd place for segmentation/classification in the 2022 Colon Nuclei Identification and Counting (CoNIC) Challenge. This success validates our approach for accurate histological nuclei analysis. Extensive experiments and ablation studies provide insights into optimal network design choices and training techniques. In conclusion, this work proposes an improved framework advancing the state-of-the-art in nuclei analysis. We will release our code and models to serve as a toolkit for the community.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"24 ","pages":"Pages 699-710"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024003672","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate segmentation and classification of nuclei in histology images is critical but challenging due to nuclei heterogeneity, staining variations, and tissue complexity. Existing methods often struggle with limited dataset variability, with patches extracted from similar whole slide images (WSI), making models prone to falling into local optima. Here we propose a new framework to address this limitation and enable robust nuclear analysis. Our method leverages dual-level ensemble modeling to overcome issues stemming from limited dataset variation. Intra-ensembling applies diverse transformations to individual samples, while inter-ensembling combines networks of different scales. We also introduce enhancements to the HoVer-Net architecture, including updated encoders, nested dense decoding and model regularization strategy. We achieve state-of-the-art results on public benchmarks, including 1st place for nuclear composition prediction and 3rd place for segmentation/classification in the 2022 Colon Nuclei Identification and Counting (CoNIC) Challenge. This success validates our approach for accurate histological nuclei analysis. Extensive experiments and ablation studies provide insights into optimal network design choices and training techniques. In conclusion, this work proposes an improved framework advancing the state-of-the-art in nuclei analysis. We will release our code and models to serve as a toolkit for the community.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology