Hasan Asyari Arief , Peter James Thomas , Weichang Li , Christian Brekken , Magnus Hjelstuen , Ivar Eskerud Smith , Steinar Kragset , Aggelos Katsaggelos
{"title":"Nonlinear interpolated Variational Autoencoder for generalized fluid content estimation","authors":"Hasan Asyari Arief , Peter James Thomas , Weichang Li , Christian Brekken , Magnus Hjelstuen , Ivar Eskerud Smith , Steinar Kragset , Aggelos Katsaggelos","doi":"10.1016/j.geoen.2024.213474","DOIUrl":null,"url":null,"abstract":"<div><div>Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"244 ","pages":"Article 213474"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024008443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.