Xunxing Song , Xiaoli Hao , Yaolin Lin , Guole Ai , Wei Yin , Jinhua Hu , Shaobo Zhang
{"title":"Energy performance assessment on vertical greening systems with green roof in hot summer and cold winter regions based on long-term experimental data","authors":"Xunxing Song , Xiaoli Hao , Yaolin Lin , Guole Ai , Wei Yin , Jinhua Hu , Shaobo Zhang","doi":"10.1016/j.ufug.2024.128597","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of vertical greening systems and green roofs with buildings is currently a popular urban development approach aimed at mitigating the urban heat island effect and promoting sustainable development. However, most existing studies on vertical greening systems and green roofs are based on short-term experimental results, which might not reflect their overall performance. Thus, this paper aims at evaluating the energy performance of vertical greening systems and green roofs in a hot summer and cold winter region in China over a three-year period. Although energy-saving was found in summer, occasionally increases in energy demand occurred in winter. It confirms the need for long-term experiments to avoid contingency. The energy saving rate of vertical greening systems and green roofs was approximately 27.49 %-42.48 % (monthly) or 28.89 %-34.02 % (quarterly) during the cooling period (33.84 % on average), and approximately −7.42 %-13.79 % (monthly) or −1.19 %-6.58 % (quarterly) during the heating period (3.6 % on average). The impact of climatic conditions on energy saving rate was evaluated. It was found that solar radiation intensity is the most important factor, followed by the outdoor air temperature and relative humidity. This paper provides an insight on the long-term energy-saving benefits of vertical greening systems and green roofs in hot summer and cold winter regions and the correlation between climatic conditions and energy saving rate.</div></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":"103 ","pages":"Article 128597"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724003959","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of vertical greening systems and green roofs with buildings is currently a popular urban development approach aimed at mitigating the urban heat island effect and promoting sustainable development. However, most existing studies on vertical greening systems and green roofs are based on short-term experimental results, which might not reflect their overall performance. Thus, this paper aims at evaluating the energy performance of vertical greening systems and green roofs in a hot summer and cold winter region in China over a three-year period. Although energy-saving was found in summer, occasionally increases in energy demand occurred in winter. It confirms the need for long-term experiments to avoid contingency. The energy saving rate of vertical greening systems and green roofs was approximately 27.49 %-42.48 % (monthly) or 28.89 %-34.02 % (quarterly) during the cooling period (33.84 % on average), and approximately −7.42 %-13.79 % (monthly) or −1.19 %-6.58 % (quarterly) during the heating period (3.6 % on average). The impact of climatic conditions on energy saving rate was evaluated. It was found that solar radiation intensity is the most important factor, followed by the outdoor air temperature and relative humidity. This paper provides an insight on the long-term energy-saving benefits of vertical greening systems and green roofs in hot summer and cold winter regions and the correlation between climatic conditions and energy saving rate.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.