Evaluation of 14-(p-tolyl)-14H-dibenzo[a,j]xanthene as a highly efficient organic corrosion inhibitor for mild steel in 1 M HCl: Electrochemical, theoretical, and surface characterization
{"title":"Evaluation of 14-(p-tolyl)-14H-dibenzo[a,j]xanthene as a highly efficient organic corrosion inhibitor for mild steel in 1 M HCl: Electrochemical, theoretical, and surface characterization","authors":"Azzeddine Belkheiri , Khadija Dahmani , Mohamed Khattabi , Khaoula Mzioud , Otmane Kharbouch , Mouhsine Galai , Nadia Dkhireche , Zakaria Benzekri , Said Boukhris , Rafa Almeer , Basheer M. Al-Maswari , Mohamed Ebn Touhami","doi":"10.1016/j.ijoes.2024.100873","DOIUrl":null,"url":null,"abstract":"<div><div>Corrosion of mild steel, particularly in acidic environments such as hydrochloric acid (HCl), remains a critical issue due to its impact on material durability, economic costs, and safety concerns. This study introduces 14-(p-tolyl)-14H-dibenzo[<em>a</em>,<em>j</em>]xanthene (ZM5), a novel and highly effective organic corrosion inhibitor, to mitigate this challenge. Employing advanced electrochemical techniques: electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP), we evaluated ZM5’s performance in a 1 M HCl solution, revealing an impressive inhibition efficiency of 94.7 %. Surface characterization using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) further confirmed the formation of a robust protective film on the steel surface, shedding light on ZM5’s adsorption mechanisms. Complementing the experimental findings, Density Functional Theory (DFT) simulations provided theoretical insights into the anti-corrosion mechanism of ZM5, aligning well with observed results. These findings underscore ZM5's potential as a highly promising corrosion inhibitor for industrial applications, effectively enhancing the corrosion resistance of mild steel in aggressive environments.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"19 12","pages":"Article 100873"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124004176","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Corrosion of mild steel, particularly in acidic environments such as hydrochloric acid (HCl), remains a critical issue due to its impact on material durability, economic costs, and safety concerns. This study introduces 14-(p-tolyl)-14H-dibenzo[a,j]xanthene (ZM5), a novel and highly effective organic corrosion inhibitor, to mitigate this challenge. Employing advanced electrochemical techniques: electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP), we evaluated ZM5’s performance in a 1 M HCl solution, revealing an impressive inhibition efficiency of 94.7 %. Surface characterization using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) further confirmed the formation of a robust protective film on the steel surface, shedding light on ZM5’s adsorption mechanisms. Complementing the experimental findings, Density Functional Theory (DFT) simulations provided theoretical insights into the anti-corrosion mechanism of ZM5, aligning well with observed results. These findings underscore ZM5's potential as a highly promising corrosion inhibitor for industrial applications, effectively enhancing the corrosion resistance of mild steel in aggressive environments.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry