László Zsolt Gergely , Lilla Barancsuk , Miklós Horváth
{"title":"Beyond net zero energy buildings: Load profile analysis and community aggregation for improved load matching","authors":"László Zsolt Gergely , Lilla Barancsuk , Miklós Horváth","doi":"10.1016/j.apenergy.2024.124934","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the load matching of electricity consumption and photovoltaic (PV) generation in residential buildings following the net zero energy building (NZEB) framework. Load matching is critical due to the increasing integration of PV systems, driven by policies like the European Green Deal. Utilizing a dataset of 316 smart-metered residential electricity profiles, we conducted a sensitivity analysis to quantify the impact of various factors. Results indicate that the order of factors influencing self-consumption (SC), self-sufficiency (SS), self-production (SP), and grid liability (GL) in a heating-dominated region are annual and intraday consumption patterns, followed by PV tilt angle and finally, azimuth angle. NZEB sizing typically ended in an average SC of only 30.3 % and a GL of 39.5 %, highlighting the need for improved sizing strategies and reducing mismatch. We proposed two alternative PV sizing approaches, maximizing self-production (achieving up to 46.7 % SC) and minimizing grid liability (reducing GL considerably). The study shows that understanding consumption variability and optimizing PV configurations can significantly enhance load-matching outcomes, mainly when aggregated in energy communities, yielding an additional 9 percentage points increase in SC under a reasonable PV penetration. While NZEB communities could exceed original power peaks (200 kW of demand) with feedback periods in more than 10 % of the year, reaching peak feedback of 657 kW, a more reasonable PV penetration suggested (optimizing PV systems for self-production) that only exceeds 200 kW limit in 4 % of the year, with a consolidated peak of 332 kW feedback. Consequently, the study provides practical strategies for better integrating PV into low voltage electricity networks while mitigating adverse grid impacts, aligning with ongoing energy policy reforms.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124934"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023171","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the load matching of electricity consumption and photovoltaic (PV) generation in residential buildings following the net zero energy building (NZEB) framework. Load matching is critical due to the increasing integration of PV systems, driven by policies like the European Green Deal. Utilizing a dataset of 316 smart-metered residential electricity profiles, we conducted a sensitivity analysis to quantify the impact of various factors. Results indicate that the order of factors influencing self-consumption (SC), self-sufficiency (SS), self-production (SP), and grid liability (GL) in a heating-dominated region are annual and intraday consumption patterns, followed by PV tilt angle and finally, azimuth angle. NZEB sizing typically ended in an average SC of only 30.3 % and a GL of 39.5 %, highlighting the need for improved sizing strategies and reducing mismatch. We proposed two alternative PV sizing approaches, maximizing self-production (achieving up to 46.7 % SC) and minimizing grid liability (reducing GL considerably). The study shows that understanding consumption variability and optimizing PV configurations can significantly enhance load-matching outcomes, mainly when aggregated in energy communities, yielding an additional 9 percentage points increase in SC under a reasonable PV penetration. While NZEB communities could exceed original power peaks (200 kW of demand) with feedback periods in more than 10 % of the year, reaching peak feedback of 657 kW, a more reasonable PV penetration suggested (optimizing PV systems for self-production) that only exceeds 200 kW limit in 4 % of the year, with a consolidated peak of 332 kW feedback. Consequently, the study provides practical strategies for better integrating PV into low voltage electricity networks while mitigating adverse grid impacts, aligning with ongoing energy policy reforms.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.