Trailblazing 1D gadolinium-doped yttrium aluminium garnet (YAG: Gd3+) nanofibers for UV-optimized applications

Q3 Physics and Astronomy Results in Optics Pub Date : 2024-11-17 DOI:10.1016/j.rio.2024.100762
Khushbu A. Rathi , Tejaswini A. Rathi , Subhash B. Kondawar , Pankaj Koinkar , Sanjay R. Dhakate
{"title":"Trailblazing 1D gadolinium-doped yttrium aluminium garnet (YAG: Gd3+) nanofibers for UV-optimized applications","authors":"Khushbu A. Rathi ,&nbsp;Tejaswini A. Rathi ,&nbsp;Subhash B. Kondawar ,&nbsp;Pankaj Koinkar ,&nbsp;Sanjay R. Dhakate","doi":"10.1016/j.rio.2024.100762","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a novel approach to fabricating Yttrium Aluminum Garnet (YAG) nanofibers doped with Gadolinium (Gd<sup>3+</sup>) ions using the electrospinning technique. Rare earth-doped electrospun nanofibers, known for their exceptional performance, attract significant interest for applications in flexible display devices. While Gd<sup>3+</sup>-doped YAG materials have been studied, this is the first instance of their synthesis in nanofiber form, enhancing their optical and emission properties, particularly in the ultraviolet-B i.e. UV-B (280–315 nm) range. The study aims to develop and characterize these nanofibers with varying Gd<sup>3+</sup> concentrations (x = 0.5, 1, 1.5, 2 mol%), employing techniques like X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), and photoluminescence to analyze structural integrity, surface morphology, and luminescence. XRD confirmed the pure YAG phase after calcination at 950 °C for 2 hrs, and the nanofibers showed a strong emission peak at 313 nm under 274 nm excitation corresponding to the <sup>6</sup>P<sub>7/2</sub> → <sup>8</sup>S<sub>7/2</sub> transition, with optimal photoluminescence at 1 mol% Gd<sup>3+</sup> doping. These results highlight the potential of Gd<sup>3+</sup>-doped YAG nanofibers for advanced applications in flexible electronics and UV-based display devices.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"17 ","pages":"Article 100762"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a novel approach to fabricating Yttrium Aluminum Garnet (YAG) nanofibers doped with Gadolinium (Gd3+) ions using the electrospinning technique. Rare earth-doped electrospun nanofibers, known for their exceptional performance, attract significant interest for applications in flexible display devices. While Gd3+-doped YAG materials have been studied, this is the first instance of their synthesis in nanofiber form, enhancing their optical and emission properties, particularly in the ultraviolet-B i.e. UV-B (280–315 nm) range. The study aims to develop and characterize these nanofibers with varying Gd3+ concentrations (x = 0.5, 1, 1.5, 2 mol%), employing techniques like X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), and photoluminescence to analyze structural integrity, surface morphology, and luminescence. XRD confirmed the pure YAG phase after calcination at 950 °C for 2 hrs, and the nanofibers showed a strong emission peak at 313 nm under 274 nm excitation corresponding to the 6P7/28S7/2 transition, with optimal photoluminescence at 1 mol% Gd3+ doping. These results highlight the potential of Gd3+-doped YAG nanofibers for advanced applications in flexible electronics and UV-based display devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于紫外线优化应用的开拓性 1D 掺钆钇铝石榴石(YAG: Gd3+)纳米纤维
本研究提出了一种利用电纺丝技术制造掺杂钆(Gd3+)离子的钇铝石榴石(YAG)纳米纤维的新方法。掺稀土的电纺纳米纤维以其优异的性能而闻名,在柔性显示器件中的应用引起了极大的兴趣。虽然已经对掺杂 Gd3+ 的 YAG 材料进行了研究,但这是首次以纳米纤维形式合成这种材料,从而增强其光学和发射特性,特别是在紫外线-B(即 UV-B,280-315 纳米)范围内。本研究旨在开发和表征这些具有不同 Gd3+ 浓度(x = 0.5、1、1.5、2 摩尔%)的纳米纤维,并采用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、X 射线光电子能谱 (XPS) 和光致发光等技术来分析其结构完整性、表面形态和发光特性。在 950 °C 煅烧 2 小时后,XRD 证实了纯 YAG 相;在 274 nm 激发下,纳米纤维在 313 nm 处显示出对应于 6P7/2 → 8S7/2 转变的强发射峰,在掺杂 1 mol% Gd3+ 时光致发光效果最佳。这些结果凸显了掺杂 Gd3+ 的 YAG 纳米纤维在柔性电子器件和紫外显示设备的先进应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
期刊最新文献
Application of principal component analysis and Artificial neural networks for the prediction of QoS in FSO links over South Africa An efficient broadband metasurface design for smart health care and future communication applications An SMS fiber structure for seismocardiography (SCG) monitoring Editorial Board Optical dual gas sensor for biomedical monitoring of NO and O2 based on electrospun fibers containing CsPbBr3 QDs and PtTFPP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1