Analysis of the influence of clamp installation position on vibration stress for spatial pipeline

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Pressure Vessels and Piping Pub Date : 2024-11-15 DOI:10.1016/j.ijpvp.2024.105363
Shang Lv , Wei Sun , Dongxu Du , Hongwei Ma , Xuedong Sun , Shihao Ma
{"title":"Analysis of the influence of clamp installation position on vibration stress for spatial pipeline","authors":"Shang Lv ,&nbsp;Wei Sun ,&nbsp;Dongxu Du ,&nbsp;Hongwei Ma ,&nbsp;Xuedong Sun ,&nbsp;Shihao Ma","doi":"10.1016/j.ijpvp.2024.105363","DOIUrl":null,"url":null,"abstract":"<div><div>In aero-engines, small changes in the clamp position can sometimes significantly alter the vibration stress of the pipeline system, so there is an urgent need to study the influence of clamp position on pipeline vibration stress. Firstly, a dynamic modeling method of spatial pipeline system is proposed based on the finite element method, the modeling method can more accurately simulate the complex boundary constraints caused by multiple clamps and pipe fittings. Then, an improved dynamic substructure method (reduced-order method) is developed by combining the dynamic substructure method with the clamp position parametric model to improve the efficiency of the subsequent clamp position parameters influence analysis. Further, the rationality and efficiency of the reduced-order modeling approach are verified by numerical and experimental studies. Finally, the influence of the clamp position and the key parameters of different components (pipe body, clamps, fittings) on the pipeline vibration stress is investigated. The results show that when the main vibration region of the pipeline system coincides with the installation region of the clamp, the vibration stress can be significantly reduced by installing the clamp in the maximum modal displacement region of the corresponding pipe segment. The related modeling methods and conclusions can provide valuable references for the dynamics design of pipeline system in engineering practice.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105363"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In aero-engines, small changes in the clamp position can sometimes significantly alter the vibration stress of the pipeline system, so there is an urgent need to study the influence of clamp position on pipeline vibration stress. Firstly, a dynamic modeling method of spatial pipeline system is proposed based on the finite element method, the modeling method can more accurately simulate the complex boundary constraints caused by multiple clamps and pipe fittings. Then, an improved dynamic substructure method (reduced-order method) is developed by combining the dynamic substructure method with the clamp position parametric model to improve the efficiency of the subsequent clamp position parameters influence analysis. Further, the rationality and efficiency of the reduced-order modeling approach are verified by numerical and experimental studies. Finally, the influence of the clamp position and the key parameters of different components (pipe body, clamps, fittings) on the pipeline vibration stress is investigated. The results show that when the main vibration region of the pipeline system coincides with the installation region of the clamp, the vibration stress can be significantly reduced by installing the clamp in the maximum modal displacement region of the corresponding pipe segment. The related modeling methods and conclusions can provide valuable references for the dynamics design of pipeline system in engineering practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
夹钳安装位置对空间管道振动应力的影响分析
在航空发动机中,管夹位置的微小变化有时会显著改变管路系统的振动应力,因此迫切需要研究管夹位置对管路振动应力的影响。首先,提出了一种基于有限元法的空间管道系统动态建模方法,该建模方法能更准确地模拟多管夹、多管件造成的复杂边界约束。然后,将动态子结构法与卡箍位置参数模型相结合,建立了改进的动态子结构法(降阶法),提高了后续卡箍位置参数影响分析的效率。此外,还通过数值和实验研究验证了降阶建模方法的合理性和效率。最后,研究了管夹位置和不同部件(管体、管夹、管件)的关键参数对管道振动应力的影响。结果表明,当管道系统的主要振动区域与卡箍安装区域重合时,将卡箍安装在相应管段的最大模态位移区域可显著降低振动应力。相关建模方法和结论可为工程实践中的管道系统动力学设计提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
期刊最新文献
Study on the synergistic effect of welding residual stress and hydrogen diffusion on fatigue crack growth of X80 steel pipeline Two-step feature extraction of acoustic emission signals for leakage detection of valves in gas pipelines An adaptive spherical indentation test integrating targeted testing scenarios, data acquisition, and model selection for uniaxial mechanical property predictions Reverse deformation design for bending control in welding of ring stiffeners Analysis of the influence of clamp installation position on vibration stress for spatial pipeline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1