{"title":"Adsorption of hexavalent chromium from wastewater using magnetic biochar derived from peanut hulls","authors":"Lehlogonolo Tabana, Annita Kupa, Shepherd Tichapondwa","doi":"10.1016/j.pce.2024.103815","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the utilization of peanut hulls as a precursor for the preparation of magnetic biochar through pyrolysis was investigated. To enhance the magnetic and adsorption properties of the biochar, the peanut hulls biomass was modified using ferric chloride hexahydrate and magnesium chloride hexahydrate. Response surface methodology was employed to evaluate the influence of biomass metal concentration, pyrolysis temperature, pyrolysis period and flow of nitrogen on the yield and Cr (VI) adsorption efficiency of the synthesized biochar. A 17-run experimental matrix was generated using Optimal Design to investigate the interactions among four input parameters. The results led to the development of a quadratic model, which demonstrated a high degree of predictability in accordance with the experimental data. Analysis of variance (ANOVA) confirmed that the models for yield and Cr (VI) adsorption efficiency were highly significant (p < 0.05), with coefficients of determination (R<sup>2</sup>) values of 0.891 and 0.988, respectively. The optimal synthesis conditions for producing biochar with superior physicochemical properties were identified as a pyrolysis temperature of 300 °C, a pyrolysis duration of 2 h, a metal-to-biomass ratio of 0.5, and a constant flow of nitrogen. A desirability of 85% was achieved through numerical optimization, corresponding to a yield of 63% and complete Cr (VI) removal. Further optimization of Cr (VI) adsorption efficiency, considering the effects of pH (3–12), adsorbent loading (1–15 g/L), and initial Cr (VI) concentration (5–20 mg/L), was performed using a 19-run experimental matrix. ANOVA for Cr (VI) adsorption efficiency model revealed high significance (p < 0.05) with an R<sup>2</sup> value of 0.916.</div><div>The magnetic biochar demonstrated a remarkable adsorption efficiency of 98% under the experimental conditions of solution pH 3, adsorbent dosage of 5 g/L, and an initial Cr (VI) concentration of 20 mg/L. The desirability of 100% was obtained by a numerical optimization method representing Cr (VI) removal of 98%. The adsorption behaviour was adequately described by the Freundlich isotherm model, suggesting multilayer adsorption, with a maximum adsorption capacity of 12 mg/g. Biochar also proved to have strong magnetic properties which enhanced solid-liquid separation post adsorption experiments.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"137 ","pages":"Article 103815"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524002730","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the utilization of peanut hulls as a precursor for the preparation of magnetic biochar through pyrolysis was investigated. To enhance the magnetic and adsorption properties of the biochar, the peanut hulls biomass was modified using ferric chloride hexahydrate and magnesium chloride hexahydrate. Response surface methodology was employed to evaluate the influence of biomass metal concentration, pyrolysis temperature, pyrolysis period and flow of nitrogen on the yield and Cr (VI) adsorption efficiency of the synthesized biochar. A 17-run experimental matrix was generated using Optimal Design to investigate the interactions among four input parameters. The results led to the development of a quadratic model, which demonstrated a high degree of predictability in accordance with the experimental data. Analysis of variance (ANOVA) confirmed that the models for yield and Cr (VI) adsorption efficiency were highly significant (p < 0.05), with coefficients of determination (R2) values of 0.891 and 0.988, respectively. The optimal synthesis conditions for producing biochar with superior physicochemical properties were identified as a pyrolysis temperature of 300 °C, a pyrolysis duration of 2 h, a metal-to-biomass ratio of 0.5, and a constant flow of nitrogen. A desirability of 85% was achieved through numerical optimization, corresponding to a yield of 63% and complete Cr (VI) removal. Further optimization of Cr (VI) adsorption efficiency, considering the effects of pH (3–12), adsorbent loading (1–15 g/L), and initial Cr (VI) concentration (5–20 mg/L), was performed using a 19-run experimental matrix. ANOVA for Cr (VI) adsorption efficiency model revealed high significance (p < 0.05) with an R2 value of 0.916.
The magnetic biochar demonstrated a remarkable adsorption efficiency of 98% under the experimental conditions of solution pH 3, adsorbent dosage of 5 g/L, and an initial Cr (VI) concentration of 20 mg/L. The desirability of 100% was obtained by a numerical optimization method representing Cr (VI) removal of 98%. The adsorption behaviour was adequately described by the Freundlich isotherm model, suggesting multilayer adsorption, with a maximum adsorption capacity of 12 mg/g. Biochar also proved to have strong magnetic properties which enhanced solid-liquid separation post adsorption experiments.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).