Feasibility and parametric study of a groove-type thermoelectric generator under multiphysics field conditions

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-17 DOI:10.1016/j.applthermaleng.2024.124972
Ding Luo , Zerui Liu , Jin Cao , Yuying Yan
{"title":"Feasibility and parametric study of a groove-type thermoelectric generator under multiphysics field conditions","authors":"Ding Luo ,&nbsp;Zerui Liu ,&nbsp;Jin Cao ,&nbsp;Yuying Yan","doi":"10.1016/j.applthermaleng.2024.124972","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a novel thermoelectric generator (TEG) configuration called the groove-type TEG, which introduces triangular brackets to increase the contact area between thermoelectric semiconductors and conductive strips. Through a thermal-electric-mechanical multiphysics numerical model, the performance of the groove-type TEG under various parameters is evaluated. Our findings reveal that the output power of the groove-type TEG can be effectively improved by increasing the length and height of the grooves, and the total height of the upper and lower grooves should be lower than the height of the thermoelectric semiconductor. Moreover, the groove height ratio and thermoelectric semiconductor height play crucial roles in determining the TEG’s performance and mechanical stability. Considering the allowable thermal stress, the optimal height ratio is 0.125 (or 0.875) when the semiconductor height is less than 1.2 mm (or greater than 1.3 mm). The groove-type TEG reaches the output power and conversion efficiency of 0.84 W and 6.9 %, respectively, at the temperature difference of 200 K and the semiconductor height of 1.3 mm, which are 24.8 % and 0.2 % higher than those of the traditional π-type TEG. This work provides a new approach to enhancing the performance of thermoelectric generators.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"259 ","pages":"Article 124972"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124026401","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel thermoelectric generator (TEG) configuration called the groove-type TEG, which introduces triangular brackets to increase the contact area between thermoelectric semiconductors and conductive strips. Through a thermal-electric-mechanical multiphysics numerical model, the performance of the groove-type TEG under various parameters is evaluated. Our findings reveal that the output power of the groove-type TEG can be effectively improved by increasing the length and height of the grooves, and the total height of the upper and lower grooves should be lower than the height of the thermoelectric semiconductor. Moreover, the groove height ratio and thermoelectric semiconductor height play crucial roles in determining the TEG’s performance and mechanical stability. Considering the allowable thermal stress, the optimal height ratio is 0.125 (or 0.875) when the semiconductor height is less than 1.2 mm (or greater than 1.3 mm). The groove-type TEG reaches the output power and conversion efficiency of 0.84 W and 6.9 %, respectively, at the temperature difference of 200 K and the semiconductor height of 1.3 mm, which are 24.8 % and 0.2 % higher than those of the traditional π-type TEG. This work provides a new approach to enhancing the performance of thermoelectric generators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多物理场条件下沟槽型热电发生器的可行性和参数研究
在本研究中,我们提出了一种新型热电发生器(TEG)结构,称为沟槽型 TEG,它引入了三角形支架,以增加热电半导体与导电条之间的接触面积。通过热-电-机械多物理场数值模型,我们评估了凹槽型 TEG 在各种参数下的性能。研究结果表明,增加沟槽的长度和高度可有效提高沟槽式 TEG 的输出功率,且上下沟槽的总高度应低于热电半导体的高度。此外,沟槽高度比和热电半导体高度对 TEG 的性能和机械稳定性起着至关重要的作用。考虑到允许的热应力,当半导体高度小于 1.2 毫米(或大于 1.3 毫米)时,最佳高度比为 0.125(或 0.875)。在温差为 200 K 和半导体高度为 1.3 mm 时,沟槽型 TEG 的输出功率和转换效率分别达到 0.84 W 和 6.9 %,比传统的 π 型 TEG 高 24.8 % 和 0.2 %。这项研究为提高热电发电机的性能提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Editorial Board Naturally circulated system under low to moderate heating condition with supercritical fluid: A comprehensive investigation of loop orientation and Ledinegg instability Novel fabrication of polyethylene glycol/ceramic composite pellets with an excellent phase change shape stable trait and their potential applications for greenhouse insulation Thermal-mechanical behavior of deeply buried pipe energy pile group in sand obtained from model test Performance of a greenhouse heating system utilizing energy transfer between greenhouses based on the dual source heat pump
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1