Optimal sequential detection by sparsity likelihood

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-11-17 DOI:10.1016/j.csda.2024.108089
Jingyan Huang, Hock Peng Chan
{"title":"Optimal sequential detection by sparsity likelihood","authors":"Jingyan Huang,&nbsp;Hock Peng Chan","doi":"10.1016/j.csda.2024.108089","DOIUrl":null,"url":null,"abstract":"<div><div>We propose here a sparsity likelihood stopping rule to detect change-points when there are multiple data streams. It is optimal in the sense of minimizing, asymptotically, the detection delay when the change-points is present in only a small fraction of the data streams. This optimality holds at all levels of change-point sparsity. A key contribution of this paper is that we show optimality when there is extreme sparsity. Extreme sparsity refers to the number of data streams with change-points increasing very slowly as the number of data streams goes to infinity. The theoretical results are backed by a numerical study that shows the sparsity likelihood stopping rule performing well at all levels of sparsity. Applications of the stopping rule on non-normal models are also illustrated here.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108089"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001737","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose here a sparsity likelihood stopping rule to detect change-points when there are multiple data streams. It is optimal in the sense of minimizing, asymptotically, the detection delay when the change-points is present in only a small fraction of the data streams. This optimality holds at all levels of change-point sparsity. A key contribution of this paper is that we show optimality when there is extreme sparsity. Extreme sparsity refers to the number of data streams with change-points increasing very slowly as the number of data streams goes to infinity. The theoretical results are backed by a numerical study that shows the sparsity likelihood stopping rule performing well at all levels of sparsity. Applications of the stopping rule on non-normal models are also illustrated here.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稀疏似然法优化顺序检测
在此,我们提出了一种稀疏似然停止规则,用于在存在多个数据流时检测变化点。当变化点只出现在一小部分数据流中时,该规则在渐近最小化检测延迟的意义上是最优的。这种最优性在所有变化点稀疏程度上都成立。本文的一个重要贡献是,我们展示了极端稀疏性时的最优性。所谓极端稀疏性,是指当数据流的数量达到无穷大时,数据流中变化点的数量会非常缓慢地增加。理论结果得到了数值研究的支持,数值研究显示稀疏性似然停止规则在所有稀疏性水平下都表现良好。这里还说明了停止规则在非正态模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model Optimal sequential detection by sparsity likelihood Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation High-dimensional copula-based Wasserstein dependence Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1